Download full-text PDF

Source
http://dx.doi.org/10.1038/274388a0DOI Listing

Publication Analysis

Top Keywords

quantum transmitter
4
transmitter release
4
release composed
4
composed subunits?
4
quantum
1
release
1
composed
1
subunits?
1

Similar Publications

Quantum Positioning Scheme Based on Microwave-Optical Entanglement.

Sensors (Basel)

December 2024

Laboratory of Advanced Navigation Technology, Information and Navigation College, Air Force Engineering University, Xi'an 710049, China.

Microwaves exhibit superior performance in free-space transmission compared to optical waves, primarily due to their ability to penetrate fog and experience lower losses in the Earth's atmosphere. Based on microwave-optical entanglement prepared by nano-cavity electro-opto-mechanic converters, we propose a scheme of a quantum positioning system using the distance-based positioning method. Principles of microwave-optical entanglement preparation and our QPS scheme are introduced in detail.

View Article and Find Full Text PDF

In optical communication, the transmitter encodes information into a set of light states defined by the modulation format, selected to accommodate specific channel conditions and to remain sufficiently distinguishable at the output. Various receiver architectures have been designed to improve the demodulation performance, ultimately limited by quantum theory. In this work, I introduce a new receiver based on a locally optimal greedy algorithm and apply it to pulse position modulation.

View Article and Find Full Text PDF

We have successfully demonstrated the integration of a commercial O-band Quantum Key Distribution (QKD) system over a testbed that replicates a carrier-grade Fiber-to-the-Home (FTTH) optical access network consisting of components and systems installed in real-life FTTH operational deployments. The experiment demonstrated a QKD transmission over a 1:16 user Gigabit Optical Passive Network (GPON) configuration featuring a total of 9 Optical Network Terminals (ONTs) at the premises of the Telecom Operator COSMOTE that followed the operator's standard FTTH divided in two splitting stages. The architecture we implemented was a downstream access network with the quantum transmitter located at the operator's Central Office (CO) and the quantum receiver located on the end user's side.

View Article and Find Full Text PDF

III-nitride multi-quantum well (MQW) diodes can modulate the light emitted by another diode with the same MQW structure by varying the bias voltage owing to the spectral overlap between the electroluminescence spectrum and spectral responsivity curve of the MQW diodes. Here, we investigate bias-controlled modulation by monolithically integrating an optical transmitter, waveguide, electro-absorption modulator (EAM), and slot grating coupler on a silicon-based III-nitride platform using compatible fabrication processes. The modulated light is coupled into a fiber, which is direct to a photodiode for characterization.

View Article and Find Full Text PDF

Unipolar quantum optoelectronics for high speed direct modulation and transmission in 8-14 µm atmospheric window.

Nat Commun

September 2024

Laboratoire de Physique de l'ENS, Département de Physique, École Normale Supérieure, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 75005, Paris, France.

The large mid-infrared (MIR) spectral region, ranging from 2.5 µm to 25 µm, has remained under-exploited in the electromagnetic spectrum, primarily due to the absence of viable transceiver technologies. Notably, the 8-14 µm long-wave infrared (LWIR) atmospheric transmission window is particularly suitable for free-space optical (FSO) communication, owing to its combination of low atmospheric propagation loss and relatively high resilience to turbulence and other atmospheric disturbances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!