Purpose: The objective of the present study was to test the hypothesis that N-acetylcysteine (NAC) may play beneficial roles against intrauterine growth retardation (IUGR)-induced hepatic damage in suckling piglets.

Methods: Fourteen IUGR and seven normal birth weight (NBW) neonatal male piglets were selected. Piglets were weaned at 7 days of postnatal age and fed the control formula milk (NBW-CON and IUGR-CON groups) or the control formula milk supplemented with 1.2 g/kg NAC (IUGR-NAC group) for 14 days (n = 7). The plasma and liver samples were analyzed for the parameters related to hepatic damage, redox status, apoptosis, and autophagy.

Results: Compared with the NBW-CON group, IUGR-CON group exhibited increased activities of plasma aminotransferases, increased numbers of apoptotic hepatocytes, as well as higher concentrations of protein carbonyl, malondialdehyde (MDA), microtubule-associated protein 1 light chain 3 beta, and phospholipid-conjugated form (MAP1LC3B-II), along with a decrease in the content of reduced glutathione (GSH). NAC treatment increased GSH content and GSH-to-oxidized GSH ratio in the liver of IUGR-NAC group, most likely owing to the improved activities of γ-glutamine-cysteine ligase, γ-glutamine-cysteine synthetase, and glutathione reductase. The hepatic protein carbonyl and MDA contents were decreased in the IUGR-NAC group compared with the IUGR-CON group. In addition, NAC-treated piglets had an increased content of B cell lymphoma/leukemia 2 protein, whereas a decreased expression level of MAP1LC3B-II in the liver.

Conclusions: NAC may have beneficial effects in improving GSH synthesis and cellular homeostasis in the liver of IUGR suckling piglets.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00394-016-1322-xDOI Listing

Publication Analysis

Top Keywords

hepatic damage
12
iugr-nac group
12
intrauterine growth
8
damage suckling
8
suckling piglets
8
synthesis cellular
8
cellular homeostasis
8
control formula
8
formula milk
8
iugr-con group
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!