Bisnaphthalimidopropyl (BNIP) derivatives are a family of compounds that exert anti-cancer activities in vitro and, according to previous studies, variations in the linker sequence have increased their DNA binding and cytotoxic activities. By modifying the linker sequence of bisnaphthalimidopropyl diaminodicyclohexylmethane (BNIPDaCHM), a previously synthesised BNIP derivative with anti-cancer properties, three novel BNIP derivatives were designed. Bisnaphthalimidopropyl-piperidylpropane (BNIPPiProp), a structural isomer of BNIPDaCHM, bisnaphthalimidopropyl ethylenedipiperidine dihydrobromide (BNIPPiEth), an isoform of BNIPDaCHM with a shorter linker chain, and (trans(trans))-bisnaphthalimidopropyl diaminodicyclohexylmethane (trans,trans-BNIPDaCHM), a stereoisomer of BNIPDaCHM, were successfully synthesised (72.3-29.5% yield) and characterised by nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS). Competitive displacement of ethidium bromide (EtBr) and UV binding studies were used to study the interactions of BNIP derivatives with Calf Thymus DNA. The cytotoxicity of these derivatives was assessed against human breast cancer MDA-MB-231 and SKBR-3 cells by MTT assay. Propidium iodide (PI) flow cytometry was conducted in order to evaluate the cellular DNA content in both breast cancer cell lines before and after treatment with BNIPs. The results showed that all novel BNIPs exhibit strong DNA binding properties in vitro, and strong cytotoxicity, with IC values in the range of 0.2-3.3 μM after 24 hours drug treatment. Two of the novel BNIP derivatives, BNIPPiEth and trans,trans-BNIPDaCHM, exhibited greater cytotoxicity against the two breast cancer cell lines studied, compared to BNIPDaCHM. By synthesising enantiopures and reducing the length of the linker sequence, the cytotoxicity of the BNIP derivatives was significantly improved compared to BNIPDaCHM, while maintaining DNA binding and bis-intercalating properties. In addition, cell cycle studies indicated that trans,trans-BNIPDaCHM, the most cytotoxic BNIP derivative, induced sub-G1 cell cycle arrest, indicative of apoptotic cell death. Based on these findings, further investigation is under way to assess the potential efficacy of trans,trans-BNIPDaCHM and BNIPPiEth in treating human breast cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6ob01850e | DOI Listing |
J Transl Med
January 2025
Department of Biology, University of Turku, Turku, Finland.
Introduction: Doxorubicin is a chemotherapeutic drug used to treat various cancers. Exercise training (ET) can attenuate some cardiotoxic effects of doxorubicin (DOX) in tumor-free animals. However, the ET effects on cardiac function and glucose metabolism in DOX-treated breast cancer models remain unclear.
View Article and Find Full Text PDFJ Transl Med
January 2025
Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Republic of Singapore.
Background: Risk-based breast cancer screening offers a more targeted and potentially cost-effective approach in cancer detection compared to age-based screening. This study aims to understand women's preferences and willingness for undergoing risk assessment tests.
Methods: A discrete choice experiment (DCE) was conducted.
BMC Res Notes
January 2025
Biological and Biomedical Sciences Department, University of North Carolina Central University, Durham, NC, 27707, USA.
Objective: African American women with breast cancer experience disproportionately poor survival outcomes, primarily due to the high prevalence of the deadliest subtype; triple-negative breast cancer (TNBC). The CRYβB2 gene is upregulated in tumors from African American patients across all breast cancer subtypes, including TNBC, and is associated with worse survival rates. This study investigated the effect of CRYβB2 on the invasion of TNBC cells and the underlying mechanisms contributing to this phenotype.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
Cancer remains a formidable global health challenge, necessitating innovative therapeutic approaches to enhance treatment efficacy and reduce adverse effects. The traditional Chinese medicine (TCM), as an embodiment of ancient wisdom, has been validated to regulate the holistic human capacity against both internal and external "evils" in accordance with TCM principles. Therefore, it stands to reason to integrate TCM into current cancer therapy paradigms, such as chemotherapy, immunotherapy, and targeted therapy.
View Article and Find Full Text PDFRadiat Oncol
January 2025
Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!