We have studied the effect of the zwitterionic surface coating of quantum dots (QDs) on their interaction with a serum supplemented cell medium and their internalization by human cervical carcinoma (HeLa) cells. Zwitterionic QDs showed negligible adsorption of human serum albumin (HSA) selected as a model serum protein, in contrast to similar but negatively charged QDs. The incorporation of zwitterionic QDs by HeLa cells was found to be lower than for negatively charged QDs and for positively charged QDs, for which the uptake yield was largest. Our results suggest that the suppression of protein adsorption, here accomplished by zwitterionic QD surfaces, offers a strategy that allows for reducing the cellular uptake of nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6nr05805aDOI Listing

Publication Analysis

Top Keywords

charged qds
12
zwitterionic surface
8
surface coating
8
coating quantum
8
quantum dots
8
protein adsorption
8
cellular uptake
8
hela cells
8
zwitterionic qds
8
negatively charged
8

Similar Publications

Revolutionizing Dual-Band Modulation and Superior Cycling Stability in GDQDs-Doped WO Electrochromic Films for Advanced Smart Window Applications.

Small

January 2025

State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.

Dual-band tungsten oxide (WO) electrochromic films are extensively investigated, yet challenges persist regarding complex fabrication processes and limited cyclic stability. In this paper, a novel approach to prepare graphdiyne quantum dots (GDQDs) doped WO films with a hexagonal crystal structure, is presented. Structural characterization reveals that the GDQDs/WO possesses a coral-like, loose structure with high crystallinity due to the synergistic modulation of morphology and crystallinity.

View Article and Find Full Text PDF

The development of quantum dot light-emitting diodes (QLEDs) represents a promising advancement in next-generation display technology. However, there are challenges, especially in achieving efficient hole injection, maintaining charge balance, and replacing low-stability organic materials such as PEDOT:PSS. To address these issues, in this study, self-assembled monolayers (SAMs) were employed to modify the surface properties of NiO, a hole injection material, within the structure of ITO/HIL/TFB/QDs/ZnMgO/Al QLEDs.

View Article and Find Full Text PDF

Supercycle Al-Doped ZnMgO Alloys via Atomic Layer Deposition for Quantum Dot Light-Emitting Diodes.

ACS Appl Mater Interfaces

January 2025

Department of Photonics and Nanoelectronics, and BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Korea.

Colloidal quantum-dot light-emitting diodes (QD-LEDs) have been significantly improved in terms of device performance and lifetime by employing zinc oxide (ZnO) as an electron transport layer (ETL). Although atomic layer deposition (ALD) allows fabrication of uniform, high-quality ZnO films with minimal defects, the high conductivity of ZnO has hindered its straightforward application as an ETL in QD-LEDs. Herein, we propose fabrication of Al-doped ZnMgO (Al:ZnMgO) ETLs for QD-LEDs through a supercycle ALD, with alternating depositions of various metal oxides.

View Article and Find Full Text PDF

Organic-inorganic formamidinium lead triiodide (FAPbI) hybrid perovskite quantum dots (QDs) have garnered considerable attention in the photovoltaic field due to their narrow bandgap, exceptional environmental stability, and prolonged carrier lifetime. Unfortunately, their insulating ligands and surface vacancy defects pose significant obstacles to efficient charge transfer across device interfaces. In this work, an electrostatic harmonization strategy at the interface using a donor-acceptor dipole molecular attachment to achieve enhanced charge separation capabilities on the QD surface is ventured.

View Article and Find Full Text PDF

MXenes quantum dots (QDs), including NbC, NbCO, and NbCF, are emerging materials with exceptional structural, electronic, and optical properties, making them highly suitable for biomedical applications. This study investigates the structural optimization, stability, electronic properties, and drug-loading potential of these QDs using fluorouracil (Flu) as a model drug. Structural analyses show that the functionalization of NbC with O and F atoms enhances stability, with binding energies (BEs) of 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!