Synthesis and applications of porous non-silica metal oxide submicrospheres.

Chem Soc Rev

Department of Chemistry & Biochemistry, Kent State University, Kent, Ohio 44242, USA.

Published: October 2016

Nowadays the development of submicroscale products of specific size and morphology that feature a high surface area to volume ratio, well-developed and accessible porosity for adsorbates and reactants, and are non-toxic, biocompatible, thermally stable and suitable as synergetic supports for precious metal catalysts is of great importance for many advanced applications. Complex porous non-silica metal oxide submicrospheres constitute an important class of materials that fulfill all these qualities and in addition, they are relatively easy to synthesize. This review presents a comprehensive appraisal of the methods used for the synthesis of a wide range of porous non-silica metal oxide particles of spherical morphology such as porous solid spheres, core-shell and yolk-shell particles as well as single-shell and multi-shell particles. In particular, hydrothermal and low temperature solution precipitation methods, which both include various structure developing strategies such as hard templating, soft templating, hydrolysis, or those taking advantage of Ostwald ripening and the Kirkendall effect, are reviewed. In addition, a critical assessment of the effects of different experimental parameters such as reaction time, reaction temperature, calcination, pH and the type of reactants and solvents on the structure of the final products is presented. Finally, the practical usefulness of complex porous non-silica metal oxide submicrospheres in sensing, catalysis, biomedical, environmental and energy-related applications is presented.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cs00060fDOI Listing

Publication Analysis

Top Keywords

porous non-silica
16
non-silica metal
16
metal oxide
16
oxide submicrospheres
12
complex porous
8
porous
5
metal
5
synthesis applications
4
applications porous
4
non-silica
4

Similar Publications

The development of new stationary phases has been the key aspect for fast and efficient high-performance liquid chromatography separation with relatively low backpressure. Core-shell particles, with a solid core and porous shell, have been extensively investigated and commercially manufactured in the last decade. The excellent performance of core-shell particles columns has been recorded for a wide range of analytes, covering small and large molecules, neutral and ionic (acidic and basic), biomolecules and metabolites.

View Article and Find Full Text PDF

Nowadays the development of submicroscale products of specific size and morphology that feature a high surface area to volume ratio, well-developed and accessible porosity for adsorbates and reactants, and are non-toxic, biocompatible, thermally stable and suitable as synergetic supports for precious metal catalysts is of great importance for many advanced applications. Complex porous non-silica metal oxide submicrospheres constitute an important class of materials that fulfill all these qualities and in addition, they are relatively easy to synthesize. This review presents a comprehensive appraisal of the methods used for the synthesis of a wide range of porous non-silica metal oxide particles of spherical morphology such as porous solid spheres, core-shell and yolk-shell particles as well as single-shell and multi-shell particles.

View Article and Find Full Text PDF

Silica, hybrid silica, hydride silica and non-silica stationary phases for liquid chromatography.

J Chromatogr Sci

April 2015

Núcleo Biotecnológico, Universidade do Oeste de Santa Catarina, Rua Paese, 198, Bairro Universitário-Bloco K. Videira, SC CEP 89560-000, Brazil

Free silanols on the surface of silica are the "villains", which are responsible for detrimental interactions of those compounds and the stationary phase (i.e., bad peak shape, low efficiency) as well as low thermal and chemical stability.

View Article and Find Full Text PDF

Metal phosphonate hybrid mesostructures: environmentally friendly multifunctional materials for clean energy and other applications.

ChemSusChem

October 2011

Institute of New Catalytic Materials Science, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, PR China.

The synthesis of porous hybrid materials has been extended to mesoporous non-silica-based organic-inorganic hybrid materials, in which mesoporous metal phosphonates represent an important family. By using organically bridged polyphosphonic acids as coupling molecules, the homogeneous incorporation of a considerable number of organic functional groups into the metal phosphonate hybrid framework has been realized. Small amounts of organic additives and the pH value of the reaction solution have a large impact on the morphology and textural properties of the resultant hybrid mesoporous metal phosphonate solids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!