Measuring energy dissipation on the nanoscale is of great interest not only for nanomechanics but also to understand important energy transformation and loss mechanisms that determine the efficiency of energy of data storage devices. Fully understanding the magnetic dynamics and dissipation processes in nanomagnets is of major relevance for a number of basic and applied issues from magnetic recording to spin-based sensor devices to biomedical magnetic-based hyperthermia treatments. Here we present experimental evidence for a counter-intuitive monotonical reduction of energy dissipation as the interaction between two nanomagnets is enhanced. This behavior, which takes place when spins are parallel, can be understood in terms of hysteresis phenomena involved in the reorientation of these spins. The measured magnetic losses of about a few femtowatts are in agreement with quasi-static micromagnetic numerical simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6nr04356a | DOI Listing |
Med Oral Patol Oral Cir Bucal
January 2025
Rua Monsenhor Furtado, 1273 Rodolfo Teófilo, Fortaleza CEP: 60.430-355. Ceará, Brasil
Background: The presence of mandibular third molars has been associated with the risk of mandibular fractures, highlighting the need for comprehensive studies considering the interaction with other mandibular structures. This study investigates how mandibular third molars and neighboring tissues can influence the structural fragility of the mandible using finite element analysis.
Material And Methods: A finite element analysis study following the guidelines proposed by RIFEM 1.
J Phys Chem Lett
January 2025
Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.
Continuous production of entropy and the corresponding energy dissipation is a defining characteristic of nonequilibrium systems. When a system's full chemical kinetic description is known, its entropy production rate can be computed from the microscopic rate constants. However, such a calculation typically underestimates energy dissipation when the states of the underlying system are mesoscopic, i.
View Article and Find Full Text PDFPlants (Basel)
January 2025
School of Life Sciences, Fudan University, Shanghai 200433, China.
: The functional traits of twigs and leaves are closely related to the ability of plants to cope with heterogeneous environments. The analysis of the characteristics of twigs and leaves and leaf thermal dissipation in riparian plants is of great significance for exploring the light energy allocation and ecological adaptation strategies of plant leaves in heterogeneous habitats. However, there are few studies on the correlation between the twig-leaf characteristics of riparian plants and their heat dissipation in light heterogeneous environments.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
Metamaterials are pushing the limits of traditional materials and are fascinating frontiers in scientific innovation. Mechanical metamaterials (MMs) are a category of metamaterials that display properties and performances that cannot be realized in conventional materials. Exploring the mechanical properties and various aspects of vibration and damping control is becoming a crucial research area.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Civil and Environmental Engineering, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.
Rigid reinforced concrete (RC) frames are generally adopted as stiff elements to make the building structures resistant to seismic forces. However, a method has yet to be fully sought to provide earthquake resistance through optimizing beam and column performance in a rigid frame. Due to its high corrosion resistance, the integration of CFRP offers an opportunity to reduce frequent repairs and increase durability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!