Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mercury (Hg) associated with coal ash is an environmental concern, particularly if the release of coal ash to the environment is associated with the conversion of inorganic Hg to methylmercury (MeHg), a bioaccumulative form of Hg that is produced by anaerobic microorganisms. In this study, sediment slurry microcosm experiments were performed to understand how spilled coal ash might influence MeHg production in anaerobic sediments of an aquatic ecosystem. Two coal ash types were used: (1) a weathered coal ash; and (2) a freshly collected, unweathered fly ash that was relatively enriched in sulfate and Hg compared to the weathered ash. These ash samples were added to anaerobic sediment slurries constructed with a relatively pristine sediment (containing 0.03 mg kg Hg) and a Hg-contaminated sediment (containing 0.29 mg kg Hg). The results of these experiments showed negligible net production of MeHg in microcosms with no ash and in microcosms amended with the low sulfate/low Hg ash. In contrast, slurry microcosms amended with high sulfate/high Hg ash showed increases in total MeHg content that was 2 to 3 times greater than control microcosms without ash (p < 0.001). 16S amplicon sequencing of microbial communities in the slurries indicated that the coal ash addition generally increased the relative abundance of the methylating microbial community, including sulfate-reducing bacteria and iron-reducing bacteria species that are known to be efficient methylators of Hg. The stimulation of these microorganisms was likely caused by the release of substrates (sulfate and Fe) originating from the ash. Overall, the results highlight the need to incorporate both environmental parameters and coal ash characteristics into risk assessments that guide coal ash management and disposal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6em00458j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!