2-Thiocytosine (TC) and 2-thiouracil (TU) were subjected to hydrated electron (e), formate radical (CO˙) and 2-hydroxypropan-2-yl radical ((CH)˙COH) reactions in aqueous medium. Transients were characterized by absorption spectroscopy and the experimental findings were rationalized by DFT calculations at LC-ωPBE and M06-2X levels using a 6-311+G(d,p) basis set and SMD solvation. In e reactions, a ring N-atom protonated radical of TC and an exocyclic O-atom protonated radical of TU were observed via addition of e and subsequent protonation by solvent molecules. However, two competing but simultaneous mechanisms are operative in CO˙ reactions with TC and TU. The first one corresponds to formations of N(O)-atom protonated radicals (similar to e reactions); the second mechanism led to 2 center-3 electron, sulfur-sulfur bonded neutral dimer radicals, TCdim˙ and TUdim˙. DFT calculations demonstrated that H-abstraction by CO˙ from TC(TU) results in S-centered radical which upon combination with TC(TU) provide the dimer radical. In some cases, DFT energy profiles were further validated by CBS-QB3//M06-2X calculations. This is the first time report for a contradictory behavior in the mechanisms of e and CO˙ reactions with any pyrimidines or their thio analogues.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cp04483bDOI Listing

Publication Analysis

Top Keywords

hydrated electron
8
electron formate
8
formate radical
8
dft calculations
8
protonated radical
8
co˙ reactions
8
radical
7
reactions
5
contrasting reactions
4
reactions hydrated
4

Similar Publications

Cementitious Capillary Crystallization Waterproofing Material (CCCW), as an efficient self-healing agent, can effectively repair damage in concrete structures, thereby extending their service life. To address the various types of damage encountered in practical engineering applications, this study investigates the impact of different mixing methods for CCCW (including internal mixing, curing, and post-crack repair) on the multi-dimensional self-healing performance of concrete. The self-healing capacity of concrete was evaluated through water pressure damage self-healing tests, freeze-thaw damage self-healing tests, mechanical load damage self-healing tests, and crack damage self-healing tests.

View Article and Find Full Text PDF

Effect of Strengthening Mechanism of Alkali Curing on Mechanical Properties of Fly Ash Lightweight Aggregates and Its Concrete.

Materials (Basel)

December 2024

Jiangsu Key Laboratory Environmental Impact and Structural Safety in Engineering, China University of Mining and Technology, Xuzhou 221116, China.

The low hydration degree of fly ash in Fly Ash Unburned Lightweight Aggregate (FULA) is not conducive to the development of the mechanical properties of lightweight aggregates and their concrete. In this paper, FULA was immersed in an alkaline solution with the purpose of improving the mechanical properties of FULA and its concrete. Firstly, FULA was prepared using fly ash as the main raw material.

View Article and Find Full Text PDF

Covalent Grafting of Graphene Quantum Dots onto Stepped TiO-Mediated Electronic Modulation for Electrocatalytic Hydrogen Evolution.

Inorg Chem

January 2025

School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou 225002, China.

The interaction between electrocatalytic active centers and their support is essential to the electrocatalytic performance, which could regulate the electronic structure of the metal centers but requires precise design. Herein, we report on covalent grafting of graphene quantum dots (GQDs) on stepped TiO as a support to anchoring cobalt phosphide nanoparticles (CoP/GQD/S-TiO) for electrocatalytic hydrogen evolution reaction (HER). The covalent ester bonds between GQDs and TiO endow enlarged anchoring sites to achieve highly dispersed electroactive CoP nanoparticles but, more importantly, provide an efficient electron-transfer pathway from TiO to GQDs which could regulate the electronic structure of CoP.

View Article and Find Full Text PDF

The carbon footprint associated with cement production, coupled with depletion of natural resources and climate change, underscores the need for sustainable alternatives. This study explores the effect of metakaolin (MK) and nano-silica (NS) on concrete's engineering performance and environmental impact. Initially, compressive, tensile, and flexural strength tests, along with durability assessments like water absorption, sorptivity, rapid chloride permeability, and resistance to acid and sulphate attacks, were conducted.

View Article and Find Full Text PDF

Chitosan-based nanocomposite films incorporated with AgNPs/porphyrinic MOFs for killing pathogenic bacteria.

Int J Biol Macromol

January 2025

College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, China. Electronic address:

In this work, a nanocomposite film, designated as CS/PA, was fabricated by integrating chitosan (CS), porphyrinic porous coordination network (PCN), and silver nanoparticles (AgNPs). PCN modified AgNPs was denoted as PCN-AgNPs (PA). The synthesis of PA was verified through transmission electron microscope, Zeta potential, hydrated particle size, element mapping.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!