Investigation of charge transfer dynamics in dye-sensitized solar cells is of fundamental interest and the control of these dynamics is a key factor for developing more efficient solar cell devices. One possibility for attenuating losses through recombination between injected electrons and oxidized dye molecules is to move the positive charge further away from the metal oxide surface. For this purpose, a metal-free dye named E6 is developed, in which the chromophore core is tethered to two external triphenylamine (TPA) units. After photoinduced electron injection into TiO, the remaining hole is rapidly transferred to a peripheral TPA unit. Electron-hole recombination is slowed down by 30% compared to a reference dye without peripheral TPA units. Furthermore, it is found that the added TPA moieties improve the electron blocking effect of the dye, retarding recombination of electrons from TiO to the cobalt-based electrolyte.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5049646 | PMC |
http://dx.doi.org/10.1002/advs.201500174 | DOI Listing |
Nanotechnology
January 2025
Muhayil Asir, Applied College, King Khalid University, Abha 62529, Saudi Arabia.
Materials (Basel)
December 2024
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowska Str., 41-819 Zabrze, Poland.
Phenothiazine-based photosensitizers bear the intrinsic potential to substitute various expensive organometallic dyes owing to the strong electron-donating nature of the former. If coupled with a strong acceptor unit and the length of N-alkyl chain is appropriately chosen, they can easily produce high efficiency levels in dye-sensitized solar cells. Here, three novel D-A dyes containing 1H-tetrazole-5-acrylic acid as an acceptor were synthesized by varying the N-alkyl chain length at its phenothiazine core and were exploited in dye-sensitized solar cells.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland.
In this study, a polymer gel electrolyte based on polyacrylonitrile was synthesized with varying polymer-to-liquid-electrolyte ratios. DSSCs incorporating a 1:3 ratio showed optimum PV parameters. Choosing this proportion, the effect of incorporating the photoresponsive AZO dye into this polymer electrolyte was studied.
View Article and Find Full Text PDFHeliyon
January 2025
Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
In response to escalating global concerns over environmental pollution, the development of green dye-sensitized solar cells (DSSCs) has emerged as a promising technology for solar energy conversion. This study harnesses the potential of rice husk, an abundant agricultural waste in Indonesia, by extracting lignin through a simple recycling method. Lignin acts as a natural, non-toxic dopant and template for TiO₂ composites, enhancing the stability of the photoanode in DSSCs.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!