Ternary organic solar cells (OSCs), which blend two donors and fullerene derivatives with different absorption ranges, are a promising potential strategy for high-power conversion efficiencies (PCEs). In this study, inverted ternary OSCs are fabricated by blending a highly crystalline small molecule BDT-3T-CNCOO in a low band gap polymer PBDTTT-C-T:PCBM. As the small molecule is introduced, the overall PCEs increase from 7.60% to 8.58%. The morphologies of ternary blends are studied by combining transmission electron microscopy and X-ray scattering techniques at different length scales. Hierarchical phase separation is revealed in the ternary blend, which is composed of domains with sizes of ≈88, ≈50, and ≈20 nm, respectively. The hierarchical phase separation balances the charge separation and transport in ternary OSCs. As a result, the fill factors of the devices significantly improve from 58.4% to 71.6%. Thus, ternary blends show higher hole mobility and higher fill factor than binary blends, which demonstrates a facile strategy to increase the performance of OSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5049664 | PMC |
http://dx.doi.org/10.1002/advs.201500250 | DOI Listing |
iScience
January 2025
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
Organic solar cells (OSCs) have developed rapidly in recent years. However, the energy loss ( ) remains a major obstacle to further improving the photovoltaic performance. To address this issue, a ternary strategy has been employed to precisely tune the and boost the efficiency of OSCs.
View Article and Find Full Text PDFNano Lett
January 2025
Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China.
Ternary copper halides with an eco-friendly property have emerged as attractive candidates to replace toxic lead-containing perovskites for light-emitting diodes (LEDs), yet achieving long-wavelength electroluminescence remains unexplored. Herein, we report the first realization of orange-emitting LEDs (595 nm) based on nontoxic organic-inorganic PEACuI (PEA = β-phenylethylamine) films enabled by a nonionic surfactant poly(propylene glycol) bis(2-aminopropyl ether) (APPG) chemisorption. Experimental and theoretical analyses rationalize that the APPG additive has strong chemisorption with the Cu-I framework within the grain boundaries of PEACuI films, which not only improves the film's morphology but also passivates the iodine vacancy defects.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11541, Saudi Arabia.
The ongoing challenge of water pollution necessitates innovative approaches to remove organic contaminants from wastewater. In this work, new two-dimensional S-scheme heterojunction photocatalysts BiO/CdS and MoS/BiO/CdS that are intended for the effective photocatalytic destruction of 4-nitrophenol, a dangerous organic pollutant, are synthesized and characterized. Utilizing a solvothermal method, successfully generated these ternary nanocomposites, which were characterized through various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), high resolution transmission electronmicroscopy (HRTEM), Brunauer-Emmett-Telle (BET) and diffuse reflectance spectroscopy (DRS).
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Institute of Health Sciences, China Medical University, Shenyang 110122, China. Electronic address:
A flexible cotton-based Ag/AgPO/MXene (APMX) ternary composite material was successfully synthesized, serving as a dual-function and reusable surface-enhanced Raman scattering (SERS) substrate for both sensitive detection and efficient organic dye degradation. The remarkable SERS properties of the composite can be attributed to the combined effects of electromagnetic enhancement by Ag nanoparticles (Ag NPs), charge transfer enhancement from AgPO, and the chemical enhancement mechanisms associated with MXene. When employed for the detection of crystal violet (CV), the material exhibits outstanding sensitivity, achieving a limit of detection (LOD) as low as 3.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy.
This study investigates the preparation of coamorphous systems composed entirely of active pharmaceutical ingredients (APIs), namely praziquantel, niclosamide, and mebendazole. The objective was to formulate and characterize binary and ternary coamorphous systems to evaluate their structural, thermal, and stability properties. Ten different mixtures (binary and ternary) were designed through a mixture design approach and prepared using a sustainable, one-step neat grinding process in a lab-scale vibrational mill.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!