Implication of the intestinal microbiome in complications of cirrhosis.

World J Hepatol

Mamatha Bhat, Bianca M Arendt, Eberhard L Renner, Johane P Allard, Division of Gastroenterology, University Health Network, Toronto M5G 2N2, Canada.

Published: September 2016

The intestinal microbiome (IM) is altered in patients with cirrhosis, and emerging literature suggests that this impacts on the development of complications. The PubMed database was searched from January 2000 to May 2015 for studies and review articles on the composition, pathophysiologic effects and therapeutic modulation of the IM in cirrhosis. The following combination of relevant text words and MeSH terms were used, namely intestinal microbiome, microbiota, or dysbiosis, and cirrhosis, encephalopathy, spontaneous bacterial peritonitis, hepatorenal syndrome, variceal bleeding, hepatopulmonary syndrome, portopulmonary hypertension and hepatocellular carcinoma. The search results were evaluated for pertinence to the subject of IM and cirrhosis, as well as for quality of study design. The IM in cirrhosis is characterized by a decreased proportion of and , and an increased proportion of compared to healthy controls. Except for alcoholic cirrhosis, the composition of the IM in cirrhosis is not affected by the etiology of the liver disease. The percentage of increases with worsening liver disease severity and decompensation and is associated with bacteremia, spontaneous bacterial peritonitis and hepatic encephalopathy. Lactulose, rifaximin and Lactobacillus-containing probiotics have been shown to partially reverse the cirrhosis associated enteric dysbiosis, in conjunction with improvement in encephalopathy. The IM is altered in cirrhosis, and this may contribute to the development of complications associated with end-stage liver disease. Therapies such as lactulose, rifaximin and probiotics may, at least partially, reverse the cirrhosis-associated changes in the IM. This, in turn, may prevent or alleviate the severity of complications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037326PMC
http://dx.doi.org/10.4254/wjh.v8.i27.1128DOI Listing

Publication Analysis

Top Keywords

intestinal microbiome
12
liver disease
12
cirrhosis
10
development complications
8
spontaneous bacterial
8
bacterial peritonitis
8
lactulose rifaximin
8
probiotics partially
8
partially reverse
8
implication intestinal
4

Similar Publications

To clarify the effects of kefir in critical periods of development in adult diseases, we study the effects of kefir intake during early life on gut microbiota and prevention of colorectal carcinogenesis in adulthood. Lactating Wistar rats were divided into three groups: control (C), kefir lactation (KL), and kefir puberty (KP) groups. The C and KP groups received 1 mL of water/day; KL dams received kefir milk daily (10 CFU/mL) during lactation.

View Article and Find Full Text PDF

coordinates the IL-10 inducing activity of .

Microbiol Spectr

January 2025

Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.

Unlabelled: The intestine is home to a complex immune system that is engaged in mutualistic interactions with the microbiome that maintain intestinal homeostasis. A variety of immune-derived anti-inflammatory mediators have been uncovered and shown to be critical for maintaining these beneficial immune-microbiome relationships. Notably, the gut microbiome actively invokes the induction of anti-inflammatory pathways that limit the development of microbiome-targeted inflammatory immune responses.

View Article and Find Full Text PDF

Environmental and population influences on mummichog () gut microbiomes.

Microbiol Spectr

January 2025

Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.

Unlabelled: The mummichog, , an abundant estuarine fish broadly distributed along the eastern coast of North America, has repeatedly evolved tolerance to otherwise lethal levels of aromatic hydrocarbon exposure. This tolerance is linked to reduced activation of the aryl hydrocarbon receptor (AHR) signaling pathway. In other animals, the AHR has been shown to influence the gastrointestinal-associated microbial community, particularly when activated by the model toxic pollutant 3,3',4,4',5-pentachlorobiphenyl (PCB-126) and other dioxin-like compounds.

View Article and Find Full Text PDF

Oyster powder supplementation enhances immune function in mice partly through modulating the gut microbiota and arginine metabolism.

Food Funct

January 2025

State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.

Oysters are well-known for their health benefits such as immuno-modulatory functions. The intestinal microbiome serves as a key mediator between diet and immune regulation. This study aimed to investigate whether oyster consumption could alleviate cyclophosphamide (Cy)-induced immunosuppression by promoting intestinal homeostasis.

View Article and Find Full Text PDF

Background: The intestinal microbiota regulates normal brain physiology and the pathogenesis of several neurological disorders. While prior studies suggested that this regulation operates through immune cells, the underlying mechanisms remain unclear. Leveraging two well characterized murine models of low-grade glioma (LGG) occurring in the setting of the neurofibromatosis type 1 (NF1) cancer predisposition syndrome, we sought to determine the impact of the gut microbiome on optic glioma progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!