Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cancer, a group of diseases of unregulated cell proliferation, is a leading cause of death worldwide. More than 80% of compounds which have shown promising effects in preclinical studies could not get through Phase II of clinical trials. Such high attrition rate is due to improper or selective use of preclinical modalities in anticancer drug screening. The various preclinical screening methods available such as human cancer cell lines, tumor xenograft model, or genetically engineered mouse model have their respective pros and cons. Scrupulous use of these preclinical screening methods vis-à-vis efficacy of potential anticancer compound with diverse mechanism of action can help in bringing down the rate of failure of anticancer compound at clinical phase. This article provides an insight into the various preclinical methods used in anticancer studies along with their advantages and disadvantages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5051238 | PMC |
http://dx.doi.org/10.4103/0253-7613.190716 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!