WDR5 is an essential protein for enzymatic activity of MLL1. Targeting the protein-protein interaction (PPI) between MLL1 and WDR5 represents a new potential therapeutic strategy for MLL leukemia. Based on the structure of reported inhibitor WDR5-0103, a class of ester compounds were designed and synthetized to disturb MLL1-WDR5 PPI. These inhibitors efficiently inhibited the histone methyltransferase activity in vitro. Especially, WL-15 was one of the most potent inhibitors, blocking the interaction of MLL1-WDR5 with IC value of 26.4nM in competitive binding assay and inhibiting the catalytic activity of MLL1 complex with IC value of 5.4μM. Docking model indicated that ester compounds suitably occupied the central cavity of WDR5 protein and recapitulated the interactions of WDR5-0103 and the hydrophobic groups and key amino greatly increased the activity in blocking MLL1-WDR5 PPI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2016.09.073 | DOI Listing |
Chemistry
January 2025
Karlsruhe Institute of Technology, Institute for biological interfaces 1 (IBG-1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, GERMANY.
Enantioselectivity is a key advantage of enzymatic catalysis. Understanding the most important factors influencing enantioselectivity necessitates thorough investigation for each specific enzyme. In this study, we explore various approaches to optimize reaction conditions for organosilicon production using an immobilized Cytochrome C recently tailored via directed evolution.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany.
The iodination of electron-deficient arenes and heteroarenes is a long-standing problem in organic synthesis. Herein we describe the electrochemical iodination in nitromethane with BuNI as iodine source and supporting electrolyte under Lewis acid-free conditions in the presence of small amounts of chloride anions. The electrochemically generated reagent could be applied for the iodination of halogenated arenes, aromatic aldehydes, acids, esters, ketones, as well as nitroarenes to afford the products in good to excellent yields.
View Article and Find Full Text PDFBMC Res Notes
January 2025
Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai, 270-1695, Japan.
Objective: Dictyostelium differentiation-inducing factors 1 and 3 [DIF-1 (1) and DIF-3 (2), respectively], along with their derivatives, such as Ph-DIF-1 (3) and Bu-DIF-3 (4), demonstrate antibacterial activity in vitro against Gram-positive bacteria, including methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), vancomycin-sensitive Enterococcus faecalis (VSE), and vancomycin-resistant Enterococcus faecium [VRE (VanA)]. This study investigates the therapeutic potential of DIF compounds against these Gram-positive bacteria.
View Article and Find Full Text PDFNat Commun
January 2025
School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea.
Lysophagy eliminates damaged lysosomes and is crucial to cellular homeostasis; however, its underlying mechanisms are not entirely understood. We screen a ubiquitination-related compound library and determine that the substrate recognition component of the SCF-type E3 ubiquitin ligase complex, SCF(FBXO3), which is a critical lysophagy regulator. Inhibition of FBXO3 reduces lysophagy and lysophagic flux in response to L-leucyl-L-leucine methyl ester (LLOMe).
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
The Ca/calmodulin-dependent protein kinase II α (CaMKIIα) plays a crucial role in regulating neuronal signaling and higher brain functions, being involved in various brain diseases. Utilization of small molecules targeting the CaMKIIα hub domain has proved to be a promising strategy for specific CaMKIIα modulation and future therapy. Through an structure-based virtual screening campaign, we herein identified 2-arylthiazole-4-carboxylic acids as a new class of high-affinity CaMKIIα hub ligands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!