A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Probing the Influence of Dielectric Environment on Excitons in Monolayer WSe: Insight from High Magnetic Fields. | LitMetric

Probing the Influence of Dielectric Environment on Excitons in Monolayer WSe: Insight from High Magnetic Fields.

Nano Lett

National High Magnetic Field Laboratory , Los Alamos, New Mexico 87545, United States.

Published: November 2016

Excitons in atomically thin semiconductors necessarily lie close to a surface, and therefore their properties are expected to be strongly influenced by the surrounding dielectric environment. However, systematic studies exploring this role are challenging, in part because the most readily accessible exciton parameter-the exciton's optical transition energy-is largely unaffected by the surrounding medium. Here we show that the role of the dielectric environment is revealed through its systematic influence on the size of the exciton, which can be directly measured via the diamagnetic shift of the exciton transition in high magnetic fields. Using exfoliated WSe monolayers affixed to single-mode optical fibers, we tune the surrounding dielectric environment by encapsulating the flakes with different materials and perform polarized low-temperature magneto-absorption studies to 65 T. The systematic increase of the exciton's size with dielectric screening, and concurrent reduction in binding energy (also inferred from these measurements), is quantitatively compared with leading theoretical models. These results demonstrate how exciton properties can be tuned in future 2D optoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.6b03276DOI Listing

Publication Analysis

Top Keywords

dielectric environment
16
high magnetic
8
magnetic fields
8
surrounding dielectric
8
dielectric
5
probing influence
4
influence dielectric
4
environment
4
environment excitons
4
excitons monolayer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!