This work describes a novel and sensitive non-isotope dilution method for simultaneous quantification of organophosphorus nerve agents (OPNAs) soman (GD) and VX adducts to butyrylcholinesterase (BChE), their aged methylphosphonic acid (MeP) adduct and unadducted BChE in plasma exposed to OPNA. OPNA-BChE adducts were isolated with an off-column procainamide-gel separation (PGS) from plasma, and then digested with pepsin into specific adducted FGESAGAAS nonapeptide (NP) biomarkers. The resulting NPs were detected by UHPLC-MS/MS MRM. The off-column PGS method can capture over 90% of BChE, MeP-BChE, VX-BChE and GD-BChE from their respective plasma materials. One newly designed and easily synthesized phosphorylated BChE nonapeptide with one Gly-to-Ala mutation was successfully reported to serve as internal standard instead of traditional isotopically labeled BChE nonapeptide. The linear range of calibration curves were from 1.00-200ngmL for VX-NP, 2.00-200ngmL for GD-NP and MeP-NP (R≥0.995), and 3.00-200ngmL for BChE NP (R≥0.990). The inter-day precision had relative standard deviation (%RSD) of <8.89%, and the accuracy ranged between 88.9-120%. The limit of detection was calculated to be 0.411, 0.750, 0.800 and 1.43ngmL for VX-NP, GD-NP, MeP-NP and BChE NP, respectively. OPNA-exposed quality control plasma samples were characterized as part of method validation. Investigation of plasma samples unexposed to OPNA revealed no baseline values or interferences. Using the off-column PGS method combined with UHPLC-MS/MS, VX-NP and GD-NP adducts can be unambiguously detected with high confidence in 0.10ngmL and 0.50ngmL of exposed human plasma respectively, only requiring 0.1mL of plasma sample and taking about four hours without special sample preparation equipment. These improvements make it a simple, sensitive and robust PGS-UHPLC-MS/MS method, and this method will become an attractive alternative to immunomagnetic separation (IMS) method and a useful diagnostic tool for retrospective detection of OPNA exposure with high confidence. Furthermore, using the developed method, the adducted BChE levels from VX and GD-exposed (0.10-100ngmL) plasma samples were completely characterized, and the fact that VX being more active and specific to BChE than GD was re-confirmed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2016.09.044DOI Listing

Publication Analysis

Top Keywords

simultaneous quantification
8
soman adducts
8
adducts butyrylcholinesterase
8
aged methylphosphonic
8
methylphosphonic acid
8
off-column procainamide-gel
8
procainamide-gel separation
8
bche nonapeptide
8
bche
6
quantification soman
4

Similar Publications

In this study, DL-phenylalanine modified with a multiwall carbon nanotube paste electrode is used as advanced electrochemical sensor for analysing of 0.1 mM caffeic acid (CFA) with simultaneous detection of riboflavin (RFN). The developed sensors include electrochemically polymerized DL-phenylalanine (DL-PA) modified multiwall carbon nanotube paste electrode [DL-PAMMCNTPE] and bare multiwall carbon nanotube paste electrode [BMCNTPE].

View Article and Find Full Text PDF

Assessing Wound Healing in Vivo Using a Dual-Function Phosphorescent Probe Sensitive to Tissue Oxygenation and Regenerating Collagen.

ACS Appl Mater Interfaces

December 2024

Institute of Translational Medicine, Faculty of Health Sciences & Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau, China.

Levels of tissue oxygenation and collagen regeneration are critical indicators in the early evaluation of wound healing. Traditionally, these factors have been assessed using separate instruments and different methodologies. Here, we adopt the spatially averaged phosphorescence lifetime approach using Re-diimine complexes (Re-probe) to enable simultaneous quantification of these two critical factors in healing wounds.

View Article and Find Full Text PDF

Calcium-organic matter fouling in nanofiltration: Synchrotron-based X-ray fluorescence and absorption near-edge structure spectroscopy for speciation.

Water Res

December 2024

Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Electronic address:

Calcium (Ca)-enhanced organic matter (OM) fouling of nanofiltration (NF) membranes leads to reduced flux during desalination and requires frequent cleaning. Fouling mechanisms are not fully understood, which limits the development of targeted fouling control methods. This study employed synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near-edge structure (XANES) spectroscopy to quantify the spatial distribution and mass of Ca deposition as well as changes in the Ca coordination environment characteristic of specific fouling mechanisms, respectively.

View Article and Find Full Text PDF

N-nitrosamine impurities have been detected in a vast variety of drug substances and drug products, showing concern for regulatory aspects. To meet the regulatory requirement for the concerned impurity, a sensitive analytical method capable of quantifying these impurities at a lower level with accuracy and precision is required. This article focuses on the development and validation of an analytical method for the simultaneous detection of nine nitrosamine impurities in a single method for nebivolol drug product using liquid chromatography-mass spectrometry/mass spectrometry-atmospheric pressure chemical ionization (LC-MS/MS-APCI).

View Article and Find Full Text PDF

Simultaneous determination of three β-Lactam/β-lactamase inhibitor combinations in critically ill patients by UPLC-MS/MS.

J Chromatogr B Analyt Technol Biomed Life Sci

December 2024

Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China. Electronic address:

β-Lactam/β-lactamase inhibitors (BL/BLIs) are widely used in critically ill patients. Recent research has shown the importance of therapeutic drug monitoring (TDM) of BLs, but few studies have highlighted the importance of detecting BLIs in critically ill patients. In our laboratory, we have developed and validated a simple and robust method for the determination of ceftazidime, cefoperazone, piperacillin, avibactam, sulbactam and tazobactam in human plasma by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!