Structural pliability adjacent to the kinase domain highlights contribution of FAK1 IDRs to cytoskeletal remodeling.

Biochim Biophys Acta Proteins Proteom

Morsani College of Medicine, Department of Pathology and Cell Biology, University of South Florida, Tampa, FL 33612, United States; Department of Cancer Biology and Evolution, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States. Electronic address:

Published: January 2017

Therapeutic protein kinase inhibitors are designed on the basis of kinase structures. Here, we define intrinsically disordered regions (IDRs) in structurally hybrid kinases. We reveal that 65% of kinases have an IDR adjacent to their kinase domain (KD). These IDRs are evolutionarily more conserved than IDRs distant to KDs. Strikingly, 36 kinases have adjacent IDRs extending into their KDs, defining a unique structural and functional subset of the kinome. Functional network analysis of this subset of the kinome uncovered FAK1 as topologically the most connected hub kinase. We identify that KD-flanking IDR of FAK1 is more conserved and undergoes more post-translational modifications than other IDRs. It preferentially interacts with proteins regulating scaffolding and kinase activity, which contribute to cytoskeletal remodeling. In summary, spatially and evolutionarily conserved IDRs in kinases may influence their functions, which can be exploited for targeted therapies in diseases including those that involve aberrant cytoskeletal remodeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5127739PMC
http://dx.doi.org/10.1016/j.bbapap.2016.10.002DOI Listing

Publication Analysis

Top Keywords

cytoskeletal remodeling
12
adjacent kinase
8
kinase domain
8
evolutionarily conserved
8
conserved idrs
8
subset kinome
8
idrs
7
kinase
6
structural pliability
4
pliability adjacent
4

Similar Publications

TBC1D20 coordinates vesicle transport and actin remodeling to regulate ciliogenesis.

J Cell Biol

April 2025

Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.

TBC1D20 deficiency causes Warburg Micro Syndrome in humans, characterized by multiple eye abnormalities, severe intellectual disability, and abnormal sexual development, but the molecular mechanisms remain unknown. Here, we identify TBC1D20 as a novel Rab11 GTPase-activating protein that coordinates vesicle transport and actin remodeling to regulate ciliogenesis. Depletion of TBC1D20 promotes Rab11 vesicle accumulation and actin deconstruction around the centrosome, facilitating the initiation of ciliogenesis even in cycling cells.

View Article and Find Full Text PDF

Microglial phagocytosis of haematomas is crucial for neural functional recovery following intracerebral haemorrhage (ICH), a process regulated by various factors from within and outside the central nervous system (CNS). Extracellular vesicles (EVs), significant mediators of intercellular communication, have been demonstrated to play a pivotal role in the pathogenesis and progression of CNS diseases. However, the regulatory role of endogenous EVs on the phagocytic capacity of microglia post-ICH remains elusive.

View Article and Find Full Text PDF

Functional nanoplatform for modulating cellular forces to enhance antitumor immunity via mechanotransduction.

J Control Release

January 2025

Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China. Electronic address:

Immune cells are sensitive to the perception of mechanical stimuli in the tumor microenvironment. Changes in biophysical cues within tumor tissue can alter the force-sensing mechanisms experienced by cells. Mechanical stimuli within the extracellular matrix are transformed into biochemical signals through mechanotransduction.

View Article and Find Full Text PDF

Post-translational modifications (PTMs) of proteins dynamically build the buffering and adapting interface between oncogenic mutations and environmental stressors, on the one hand, and cancer cell structure, functioning, and behavior. Aberrant PTMs can be considered as enabling characteristics of cancer as long as they orchestrate all malignant modifications and variability in the proteome of cancer cells, cancer-associated cells, and tumor microenvironment (TME). On the other hand, PTMs of proteins can enhance anticancer mechanisms in the tumoral ecosystem or sustain the beneficial effects of oncologic therapies through degradation or inactivation of carcinogenic proteins or/and activation of tumor-suppressor proteins.

View Article and Find Full Text PDF

Goldfish (), subjected to millennia of artificial selection and breeding, have diversified into numerous ornamental varieties, such as the celestial-eye (CE) goldfish, noted for its unique dorsal eye rotation. Previous studies have primarily focused on anatomical modifications in CE goldfish eyes, yet the molecular underpinnings of their distinctive eye orientation remain poorly understood. This study employed high-throughput transcriptome and proteome sequencing on 110-day-old full-sibling CE goldfish, which displayed either anterior or upward eye rotations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!