Immune adjuvants, such as ligands for pathogen-associated molecular patterns (PAMPs), have been showing promise in boosting immune responses to tumor associated antigens, and delivering these adjuvants as discrete packages is considered advantageous over delivery in soluble form. Here we describe in detail, methods for independently loading a range of adjuvants into polymer-based biodegradable particles. We also describe the means by which to characterize these particles with respect to adjuvant loading and release kinetics as well as in terms of particle size, shape, and zeta-potential. These adjuvant-loaded particles have the potential to be used in dendritic cell-based uptake experiments performed in vitro or to be used in preclinical cancer vaccine research applications where they can be co-delivered with antigen-loaded particles or some other vaccine component comprising antigenic material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-6445-1_14 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!