Cambial stem cells and their niche.

Plant Sci

Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden. Electronic address:

Published: November 2016

Unlike animals, plants often have an indefinite genetic potency to form new organs throughout their entire lifespan. Growth and organogenesis are driven by cell divisions in meristems at distinct sites within the plant. Since the meristems contributing to axial thickening in dicots (cambia) are separated from places where axes elongate (apical meristems); there is a need of communication to coordinate growth. In their behavior, some meristematic cells resemble animal stem cells whose daughter cells either maintain the capacity to divide over a long period of time or undergo differentiation. The behavior of stem cells is regulated by their microenvironment, the so called niche. The stem- and niche-cell concept is now also widely accepted for apical meristems. An integral part of the cambial niche has recently been localized to the phloem. It steers cell division activity in the cambium via the release of a peptide signal and may be a hub to integrate signals from other stem cell populations to coordinate growth. Although these signals have yet to be determined, the discovery of the cambial niche cells will pave the way for a better understanding of inter-meristematic communication and cambial stem cell behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2016.08.002DOI Listing

Publication Analysis

Top Keywords

stem cells
12
cambial stem
8
apical meristems
8
coordinate growth
8
cambial niche
8
stem cell
8
cells
6
cambial
4
niche
4
cells niche
4

Similar Publications

Exploring the landscape of exosomes in heart failure: a bibliometric analysis.

Int J Surg

January 2025

Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Background: Exosomes, which carry bioactive RNAs, proteins, lipids, and metabolites, have emerged as novel diagnostic markers and therapeutic agents for heart failure (HF). This study aims to elucidate the trends, key contributors, and research hotspots of exosomes in HF.

Methods: We collected publications related to exosomes in HF from the Web of Science Core Collection.

View Article and Find Full Text PDF

Gastric cancer is an aggressive malignancy characterized by significant clinical heterogeneity arising from complex genetic and environmental interactions. This study employed single-cell RNA sequencing, using the 10 × Genomics platform, to analyze 262,532 cells from gastric cancer samples, identifying 32 distinct clusters and 10 major cell types, including immune cells (e.g.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.

View Article and Find Full Text PDF

Mouse embryonic fibroblasts (MEFs) have been widely used as feeder cells in embryonic stem cell cultures because they can mimic the embryonic microenvironment. Milk fat globule-epidermal growth factor 8 (MFGE8) is expressed during mouse gonadal development, 10.5-13.

View Article and Find Full Text PDF

CircPRKD3-loaded exosomes concomitantly elicit tumor growth inhibition and glioblastoma microenvironment remodeling via inhibiting STAT3 signaling.

Neuro Oncol

January 2025

Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.

Background: Glioblastoma stem cells (GSCs) and their exosomes (exos) are involved in shaping the immune microenvironment, which is important for tumor invasion and recurrence. However, studies involving GSC-derived exosomal circular RNAs (GDE-circRNAs) in regulating tumor microenvironment (TME) remain unknown. Here, we comprehensively evaluated the significance of a novel immune-related GDE-circRNA in glioma microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!