This work evaluates the dosimetric properties of newly developed optically stimulated luminescence (OSL) films, fabricated with either AlO:C or AlO:C,Mg, using a prototype laser scanning reader, a developed image reconstruction algorithm, and a 6 MV therapeutic photon beam. Packages containing OSL films (AlO:C and AlO:C,Mg) and a radiochromic film (Gafchromic EBT3) were irradiated using a 6 MV photon beam using different doses, field sizes, with and without wedge filter. Dependence on film orientation of the OSL system was also tested. Diode-array (MapCHECK) and ionization chamber measurements were performed for comparison. The OSLD film doses agreed with the MapCHECK and ionization chamber data within the experimental uncertainties (<2% at 1.5 Gy). The system background and minimum detectable dose (MDD) were <0.5 mGy, and the dose response was approximately linear from the MDD up to a few grays (the linearity correction was <10% up to ~2-4 Gy), with no saturation up to 30 Gy. The dose profiles agreed with those obtained using EBT3 films (analyzed using the triple channel method) in the high dose regions of the images. In the low dose regions, the dose profiles from the OSLD films were more reproducible than those from the EBT3 films. We also demonstrated that the OSL film data are independent on scan orientation and field size over the investigated range. The results demonstrate the potential of OSLD films for 2D dosimetry, particularly for the characterization of small fields, due to their wide dynamic range, linear response, resolution and dosimetric properties. The negligible background and potential simple calibration make these OSLD films suitable for remote audits. The characterization presented here may motivate further commercial development of a 2D dosimetry system based on the OSL from AlO:C or AlO:C,Mg.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/61/21/7551 | DOI Listing |
J Thorac Imaging
January 2025
Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim.
Purpose: Computed tomography (CT) is crucial in oncologic imaging for precise diagnosis and staging. Beam-hardening artifacts from contrast media in the superior vena cava can degrade image quality and obscure adjacent structures, complicating lymph node assessment. This study examines the use of virtual monoenergetic reconstruction with photon-counting detector CT (photon-counting CT) to mitigate these artifacts.
View Article and Find Full Text PDFSci Rep
January 2025
Nanopatterning-Nanoanalysis-Photonic Materials Group, Department of Physics, Paderborn University, Warburgerstr. 100, 33098, Paderborn, Germany.
Measurements in general are limited in accuracy by the presence of noise. This also holds true for highly sophisticated scintillation-based CCD cameras, as they are used in medical applications, astronomy or transmission electron microscopy. Further, signals measured with pixelated detectors are convolved with the inherent detector point spread function.
View Article and Find Full Text PDFJ Expo Sci Environ Epidemiol
January 2025
Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Background: Elemental analysis of teeth allows for exposure assessment during critical windows of development and is increasingly used to link early life exposures and health. The measurement of inorganic elements in teeth is challenging; laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is the most widely used technique.
Objective: Both synchrotron x-ray fluorescence (SXRF) and LA-ICP-MS have the capability to measure elemental distributions in teeth with each having distinct advantages and disadvantages.
Nano Lett
January 2025
Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India.
Structured illumination microscopy (SIM) is a robust wide-field optical nanoscopy technique. Several approaches are implemented to improve SIM's resolution capability (∼2-fold). However, achieving a high resolution with a large field of view (FOV) is still challenging.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
January 2025
From Department of Neuroradiology (Niklas Lützen, Charlotte Zander, Horst Urbach), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany and Department of Neurosurgery (Jürgen Beck, Florian Volz, Katharina Wolf, Amir El Rahal), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
Type 2 CSF leaks are spinal lateral dural tears, causing spontaneous intracranial hypotension (SIH). They may be visualized with digital subtraction myelography (DSM), cone-beam CT (CBCT) myelography, energy-integrating detector or photon-counting CT myelography. A recently introduced ultrahigh-resolution cone-beam CT (UHR-CBCT) myelography has shown beneficial visualization of CSF-venous fistula, another cause of SIH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!