How deregulation of chromatin modifiers causes malignancies is of general interest. Here, we show that histone H2A T120 is phosphorylated in human cancer cell lines and demonstrate that this phosphorylation is catalyzed by hVRK1. Cyclin D1 was one of ten genes downregulated upon VRK1 knockdown in two different cell lines and showed loss of H2A T120 phosphorylation and increased H2A K119 ubiquitylation of its promoter region, resulting in impaired cell growth. In vitro, H2A T120 phosphorylation and H2A K119 ubiquitylation are mutually inhibitory, suggesting that histone phosphorylation indirectly activates chromatin. Furthermore, expression of a phosphomimetic H2A T120D increased H3 K4 methylation. Finally, both VRK1 and the H2A T120D mutant histone transformed NIH/3T3 cells. These results suggest that histone H2A T120 phosphorylation by hVRK1 causes inappropriate gene expression, including upregulated cyclin D1, which promotes oncogenic transformation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molcel.2016.09.012 | DOI Listing |
Sci China Life Sci
September 2024
The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
Proper function of the centromeres ensures correct attachment of kinetochores to spindle microtubules and faithful chromosome segregation in mitosis. Defects in the integrity and function of centromeres can result in chromosome missegregation and genomic instability. Bub1 is essential for the mitotic centromere dynamics, yet the underlying molecular mechanisms remain largely unclear.
View Article and Find Full Text PDFJ Mol Cell Biol
April 2024
MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of Institute of Health and Medicine (IHM), University of Science and Technology of China School of Life Sciences, Hefei 230026, China.
Biomedicines
September 2023
Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
Vpr binding protein (VprBP), also known as DDB1- and CUL4-associated factor1 (DCAF1), is a recently identified atypical kinase and plays an important role in downregulating the transcription of tumor suppressor genes as well as increasing the risk for colon and prostate cancers. Melanoma is the most aggressive form of skin cancer arising from pigment-producing melanocytes and is often associated with the dysregulation of epigenetic factors targeting histones. Here, we demonstrate that VprBP is highly expressed and phosphorylates threonine 120 (T120) on histone H2A to drive the transcriptional inactivation of growth-regulatory genes in melanoma cells.
View Article and Find Full Text PDFR Soc Open Sci
December 2021
Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK.
Bub1 is a serine/threonine kinase proposed to function centrally in mitotic chromosome alignment and the spindle assembly checkpoint (SAC); however, its role remains controversial. Although it is well documented that Bub1 phosphorylation of Histone 2A at T120 (H2ApT120) recruits Sgo1/2 to kinetochores, the requirement of its kinase activity for chromosome alignment and the SAC is debated. As small-molecule inhibitors are invaluable tools for investigating kinase function, we evaluated two potential Bub1 inhibitors: 2OH-BNPPI and BAY-320.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!