Background: Long noncoding RNAs (lncRNAs) have recently received wide attention as key molecules that mediate a variety of physiological and pathological processes by regulating gene expression; however, knowledge of lncRNAs in rheumatoid arthritis (RA) is limited. Thus, we investigated the lncRNA expression profile in fibroblast-like synoviocytes (FLSs) from patients with RA and explored the function of abundantly expressed lncRNAs.
Methods: LncRNA and mRNA microarrays were performed to identify differentially expressed lncRNAs in RA FLSs compared with normal FLSs. Quantitative polymerase chain reaction (qPCR) was used to validate the results, and correlation analysis was used to analyze the relationship between these aberrantly expressed lncRNAs and clinical characteristics. A receiver operating characteristic (ROC) curve was constructed to evaluate the diagnostic value of the lncRNAs identified.
Results: According to the gene expression profiles, 135 lncRNAs were differentially expressed between RA and normal FLSs. Furthermore, qPCR data showed that lncRNA ENST00000483588 was up-regulated and that three lncRNAs (ENST00000438399, uc004afb.1, and ENST00000452247) were down-regulated in RA FLSs. The expression level of ENST00000483588 was positively correlated with the level of C-reactive protein and the Simplified Disease Activity Index score. Moreover, the areas under the ROC curve were 0.85, 0.92, 0.97, and 0.92 for ENST00000483588, ENST00000438399, uc004afb.1, and ENST00000452247, respectively.
Conclusions: The results indicate that the dysregulation of ENST00000483588, ENST00000438399, uc004afb.1, and ENST00000452247 may be involved in the pathological processes of RA and that these lncRNAs may have potential value for the diagnosis and assessment of the disease activity of RA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053204 | PMC |
http://dx.doi.org/10.1186/s13075-016-1129-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!