Illuminating Molecular Symmetries with Bicircular High-Order-Harmonic Generation.

Phys Rev Lett

Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark.

Published: September 2016

AI Article Synopsis

  • The study introduces a theory about bicircular high-order-harmonic generation in molecules with N-fold rotational symmetry.
  • By using a rotating reference frame, the researchers predict the full spectrum of high-order harmonics for various driving frequency ratios.
  • The results demonstrate that the unique rotational symmetries of molecules can be identified from the harmonic signals generated in response to strong bicircular fields.

Article Abstract

We present a general theory of bicircular high-order-harmonic generation from N-fold rotationally symmetric molecules. Using a rotating frame of reference we predict the complete structure of the high-order-harmonic spectra for arbitrary driving frequency ratios and show how molecular symmetries can be directly identified from the harmonic signal. Our findings reveal that a characteristic fingerprint of rotational molecular symmetries can be universally observed in the ultrafast response of molecules to strong bicircular fields.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.117.133902DOI Listing

Publication Analysis

Top Keywords

molecular symmetries
12
bicircular high-order-harmonic
8
high-order-harmonic generation
8
illuminating molecular
4
symmetries bicircular
4
generation general
4
general theory
4
theory bicircular
4
generation n-fold
4
n-fold rotationally
4

Similar Publications

Liquid Active Surface Growth: Explaining the Symmetry Breaking in Liquid Nanoparticles.

ACS Nano

January 2025

Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China.

In our previous studies of metal nanoparticle growth, we have come to realize that the dynamic interplay between ligand passivation and metal deposition, as opposed to static facet control, is responsible for focused growth at a few active sites. In this work, we show that the same underlying principle could be applied to a very different system and explain the abnormal growth modes of liquid nanoparticles. In such a liquid active surface growth (LASG), the interplay between droplet expansion and simultaneous silica shell encapsulation gives rise to an active site of growth, which eventually becomes the long necks of nanobottles.

View Article and Find Full Text PDF

Monolayer atomic thin films of group-V elements have a high potential for application in spintronics and valleytronics because of their unique crystal structure and strong spin-orbit coupling. We fabricated Sb and Bi monolayers on a SiC(0001) substrate by the molecular-beam-epitaxy method and studied the electronic structure by angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations. The fabricated Sb film shows the (√3×√3)R30º superstructure associated with the formation of ⍺-Sb, and exhibits a semiconducting nature with a band gap of more than 1.

View Article and Find Full Text PDF

Simultaneous Profiling of Multiple Phosphorylated Metabolites in Typical Biological Matrices via Ion-Pair Reversed-Phase Ultrahigh-Performance Liquid Chromatography and Mass Spectrometry.

Anal Chem

January 2025

State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China.

Simultaneous analysis of multiple phosphorylated metabolites (phosphorylated metabolome) in biological samples is vital to reveal their physiological and pathophysiological functions, which is extremely challenging due to their low abundance in some biological matrices, high hydrophilicity, and poor chromatographic behavior. Here, we developed a new method with ion-pair reversed-phase ultrahigh-performance liquid chromatography and mass spectrometry using BEH C18 columns modified with hybrid surface technology. This method demonstrated good performances for various phosphorylated metabolites, including phosphorylated sugars and amino acids, nucleotides, NAD-based cofactors, and acyl-CoAs in a single run using standard LC systems.

View Article and Find Full Text PDF

A force field is a critical component in molecular dynamics simulations for computational drug discovery. It must achieve high accuracy within the constraints of molecular mechanics' (MM) limited functional forms, which offers high computational efficiency. With the rapid expansion of synthetically accessible chemical space, traditional look-up table approaches face significant challenges.

View Article and Find Full Text PDF

Ab Initio Study of Electron Capture in Collisions of Protons with CO Molecules.

Molecules

December 2024

Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

Ab initio calculations of cross sections for electron capture by protons in collisions with CO are carried out at energies between 100 eV/u and 50 keV/u, employing a semiclassical method within the Franck-Condon framework. The scattering wave function is expanded in a set of ab initio electronic wave functions of the HCO supermolecule. The calculation is performed on several trajectory orientations to obtain orientation-averaged total cross sections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!