Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The double polarization observable E and the helicity dependent cross sections σ_{1/2} and σ_{3/2} were measured for η photoproduction from quasifree protons and neutrons. The circularly polarized tagged photon beam of the A2 experiment at the Mainz MAMI accelerator was used in combination with a longitudinally polarized deuterated butanol target. The almost 4π detector setup of the Crystal Ball and TAPS is ideally suited to detect the recoil nucleons and the decay photons from η→2γ and η→3π^{0}. The results show that the narrow structure previously observed in η photoproduction from the neutron is only apparent in σ_{1/2} and hence, most likely related to a spin-1/2 amplitude. Nucleon resonances that contribute to this partial wave in η production are only N 1/2^{-} (S_{11}) and N 1/2^{+} (P_{11}). Furthermore, the extracted Legendre coefficients of the angular distributions for σ_{1/2} are in good agreement with recent reaction model predictions assuming a narrow resonance in the P_{11} wave as the origin of this structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.117.132502 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!