We report on nonsequential double ionization of Ar by a laser pulse consisting of two counterrotating circularly polarized fields (390 and 780 nm). The double-ionization probability depends strongly on the relative intensity of the two fields and shows a kneelike structure as a function of intensity. We conclude that double ionization is driven by a beam of nearly monoenergetic recolliding electrons, which can be controlled in intensity and energy by the field parameters. The electron momentum distributions show the recolliding electron as well as a second electron which escapes from an intermediate excited state of Ar^{+}.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.117.133202DOI Listing

Publication Analysis

Top Keywords

double ionization
12
nonsequential double
8
counterrotating circularly
8
circularly polarized
8
ionization counterrotating
4
polarized two-color
4
two-color laser
4
laser fields
4
fields report
4
report nonsequential
4

Similar Publications

: Cannabidiol (CBD) is an approved treatment for childhood epilepsies and a candidate treatment for several other CNS disorders. However, it has poor oral bioavailability. We investigated the effect of a novel lipid formulation on its absorption in humans and on its tissue distribution in mice.

View Article and Find Full Text PDF

Background/objective: This study aimed to investigate the efficacy of oral probiotic supplementation in preventing vulvovaginal infections (VVIs) in pregnant women, specifically focusing on abnormal vaginal flora (AVF), bacterial vaginosis (BV), and vulvovaginal candidiasis (VVC).

Methods: A multicenter-prospective-randomized, double-blind, placebo-controlled trial was conducted during 2016-2019. Women with normal vaginal flora (Nugent score < 4 and no candida) were divided into a research group, receiving 2 capsules/day of oral probiotic formula containing , , , , , and , or a control group, receiving a placebo until delivery.

View Article and Find Full Text PDF

Molecular Design and Mechanism Study of Non-Activated Collectors for Sphalerite (ZnS) Based on Coordination Chemistry Theory and Quantum Chemical Simulation.

Molecules

December 2024

School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.

Sphalerite flotation is generally achieved by copper activation followed by xanthate collection. This study aims to propose a design idea to find novel collectors from the perspective of molecular design and prove the theoretical feasibility that the collector can effectively recover sphalerite without copper activation. To address this, 30 compounds containing different structures of sulfur atoms and different neighboring atoms were designed based on coordination chemistry.

View Article and Find Full Text PDF

The formation of following the double ionization of small organic compounds via a roaming mechanism, which involves the generation of H and subsequent proton abstraction, has recently garnered significant attention. Nonetheless, a cohesive model explaining trends in the yield of characterizing these unimolecular reactions is yet to be established. We report yield and femtosecond time-resolved measurements following the strong-field double ionization of CHX molecules, where X = OD, Cl, NCS, CN, SCN, and I.

View Article and Find Full Text PDF
Article Synopsis
  • The study used a hybrid B3LYP version of Density Functional Theory to analyze the properties of mustard-type cancer drugs, melphalan and bendamustine, in water, focusing on their geometry, vibrational characteristics, and various electrical properties.
  • Findings showed that these drugs have low ionization energies, indicating significant antioxidant potential, with melphalan's zwitterionic form being more stable in water compared to bendamustine's.
  • Advanced calculations using the DLPNO-CCSD(T) method confirmed that the canonical form of bendamustine is more stable in water than its zwitterionic counterpart, along with noting particularly high dipole moments for some structures.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!