Amphibian metamorphosis is complex and larval morphology and physiology are completely restructured during this time. Amphibians that live in unpredictable environments are often exposed to stressors that can directly and indirectly alter physiological systems during development, with subsequent consequences (carryover effects) later in life. In this study, we investigated the effects of water level reduction on development rate, spleen size and cellularity, and examined the role of corticosterone levels in premetamorphic, metamorphic, and postmetamorphic New Mexico spadefoot toads (Spea multiplicata). Based on previous studies, we hypothesized that declining water level would increase tadpole developmental rate, but with the trade-off of increasing corticosterone to a level that would subsequently affect spleen size and cellularity, thus prolonging potential immunological suppression. Declining water levels increased developmental rate by 3 days; however, there were no significant body size effects. Corticosterone (CORT) was negatively correlated with total length, snout vent length, body weight, and spleen weight at metamorphosis, suggesting that size at metamorphosis and the immune system may be affected by excessive CORT levels. When compared to other studies, our results support the view that multiple factors may be acting as stressors in the field affecting amphibian responses, and simple pathways as tested in this study may not adequately represent field conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jez.2049 | DOI Listing |
<b>Background and Objective:</b> Prolonged utilization of chemical fertilizers can harm the soil and disturb the equilibrium of nutrients, resulting in a decline in cherry tomato yield. To enhance the growth of cherry tomato plants, it is necessary to add organic chemicals. The research aimed to determine the best elicitor biosaka concentration to apply to evoke the plant growth of cherry tomatoes (<i>Solanum lycopersicum</i> L.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, 56124, Italy.
This study presents the preparation and electrochemical testing of sulfonated styrene-grafted poly(vinylidene fluoride) (pVDF) copolymers as proton exchange membranes (PEMs) for semi-organic redox flow batteries (RFBs) based on 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/bromine. The copolymers are synthesized via a two-step procedure, involving i) atom transfer radical polymerization of styrene (Sty) for the grafting to the pVDF backbone and ii) the sulfonation of the polystyrene grafted side chains. Copolymers with different amounts of sulfonated styrene (SSty) in the side chains (i.
View Article and Find Full Text PDFAutism Res
December 2024
School of Public Health, Hubei University of Medicine, Shiyan, China.
Imbalances in several trace elements related to antioxidant function may lead to autism spectrum disorder (ASD)-related physiological dysfunction. Nonetheless, contradictory results have been found on the connection between these elements and ASD, and studies of their joint effects and interactions have been insufficient. We therefore designed a case-control study of 152 ASD children and 152 age- and sex-matched typically developing (TD) children to explore the individual and combined associations of manganese (Mn), zinc (Zn), copper (Cu), and selenium (Se) with ASD.
View Article and Find Full Text PDFBMC Microbiol
December 2024
School of Environment and Resource, Xichang University, Xichang, 615000, China.
The extensive mining of bastnasite (CeFCO) has caused pollution of lanthanum (La), cerium (Ce), and fuorine (F) in the surrounding farmland soil, severely threatening the safety of the soil ecosystem. However, the interaction effects of various chemical fractions of La, Ce, and F on the composition of microbial communities are unclear. In our study, high-throughput sequencing was performed based on the pot experiments of four types of combined pollution soils, i.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2, Nengyuan Rd., Tianhe DistrictGuangzhou 510640, China.
MCM-41, a mesoporous material with a high surface area and tunable pore size, shows great potential for water vapor adsorption. However, due to its large pore size, the effective adsorption capacity at medium to low relative partial pressures is limited in adsorption chiller applications. In this work, MCM-41 was successfully synthesized at room temperature using cetyltrimethylammonium bromide (CTAB) as a templating agent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!