Astrocyte Dysfunction in Developmental Neurometabolic Diseases.

Adv Exp Med Biol

Neurodegeneration Laboratory, Institut Pasteur Montevideo, Montevideo, Uruguay.

Published: September 2017

Astrocytes play crucial roles in maintaining brain homeostasis and in orchestrating neural development, all through tightly coordinated steps that cooperate to maintain the balance needed for normal development. Here, we review the alterations in astrocyte functions that contribute to a variety of developmental neurometabolic disorders and provide additional data on the predominant role of astrocyte dysfunction in the neurometabolic neurodegenerative disease glutaric acidemia type I. Finally, we describe some of the therapeutical approaches directed to neurometabolic diseases and discuss if astrocytes can be possible therapeutic targets for treating these disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-319-40764-7_11DOI Listing

Publication Analysis

Top Keywords

astrocyte dysfunction
8
developmental neurometabolic
8
neurometabolic diseases
8
dysfunction developmental
4
neurometabolic
4
diseases astrocytes
4
astrocytes play
4
play crucial
4
crucial roles
4
roles maintaining
4

Similar Publications

The Role of Glial Cells in the Pathophysiology of Epilepsy.

Cells

January 2025

Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye.

Epilepsy is a chronic neurological disorder marked by recurrent seizures, significantly impacting individuals worldwide. Current treatments are often ineffective for a third of patients and can cause severe side effects, necessitating new therapeutic approaches. Glial cells, particularly astrocytes, microglia, and oligodendrocytes, are emerging as crucial targets in epilepsy management.

View Article and Find Full Text PDF

The dysfunction of mitochondria, the primary source of cellular energy and producer of reactive oxygen species (ROS), is associated with brain aging and neurodegenerative diseases. Scientific evidence indicates that light in the visible and near-infrared spectrum can modulate mitochondrial activity, a phenomenon known in medicine as photobiomodulation therapy (PBM-t). The beneficial effects of PBM-t on dementia and neurodegeneration have been reviewed in the literature.

View Article and Find Full Text PDF

Objective: Therapeutic translation is challenging in spinal cord injury (SCI) and large animal models with high clinical relevance may accelerate therapeutic development. Pigs have important anatomical and physiological similarities to humans. Intraspinal inflammation mediates SCI pathophysiology.

View Article and Find Full Text PDF

Manganese (Mn) is a neurotoxin that has been etiologically linked to the development of neurodegenerative diseases in the case of overexposure. It is widely accepted that overexposure to Mn leads to manganism, which has clinical symptoms similar to Parkinson's disease (PD), and is referred to as parkinsonism. Astrocytes have been reported to scavenge and degrade extracellular α-synuclein (α-Syn) in the brain.

View Article and Find Full Text PDF

TDP43 augments astrocyte inflammatory activity through mtDNA-cGAS-STING axis in NMOSD.

J Neuroinflammation

January 2025

Department of Neurology, Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.

Abnormality in transactivating response region DNA binding protein 43 (TDP43) is well-recognized as the pathological hallmark of neurodegenerative diseases. However, the role of TDP43 in neuromyelitis optica spectrum disorder (NMOSD) remains unknown. Here, our observations demonstrate an upregulation of TDP43 in both in vitro and in vivo models of NMOSD, as well as in biological samples from NMOSD patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!