Vertical nanocolumn-assisted pluripotent stem cell colony formation with minimal cell-penetration.

Nanoscale

Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea. and Department of Biological Chemistry, Korea University of Science and Technology (UST), KIST campus, Seoul 02792, Republic of Korea.

Published: October 2016

The biological applications of vertical nanostructures mostly rely on their intracellular accessibility through the cellular membrane by promoting cell-to-nanostructure interactions. Herein, we report a seemingly counter-intuitive approach for the spontaneous formation of mouse induced pluripotent stem cell (iPSC)-derived three-dimensional spherical colonies with unlimited self-renewal and differentiation potential. The comprehensive analyses of iPSCs cultured on vertical silicon nanocolumn arrays (vSNAs) with various nanocolumn geometries show reduced cell-to-substrate adhesion and enhanced cell-to-cell interactions under optimized vSNA conditions, successfully accommodating the spontaneous production of iPSC-derived spherical colonies. Remarkably, these colonies which were only minimally penetrated by and thereby easily harvested from wafer-sized vSNAs display a substantial increase in pluripotency marker expression and successfully differentiate into three germ layers. Our vSNAs capable of large-scale fabrication, efficient for spherical colony formation, and reusable for multiple iPSC culture could serve as a broad-impact culture platform for stem cell research.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6nr06203bDOI Listing

Publication Analysis

Top Keywords

stem cell
12
pluripotent stem
8
colony formation
8
spherical colonies
8
vertical nanocolumn-assisted
4
nanocolumn-assisted pluripotent
4
cell colony
4
formation minimal
4
minimal cell-penetration
4
cell-penetration biological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!