Actomyosin contractility and RhoGTPases affect cell-polarity and directional migration during haptotaxis.

Integr Biol (Camb)

Zoological Institute, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany. and DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany and Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

Published: October 2016

AI Article Synopsis

  • The study investigates haptotaxis, the process where cells migrate towards gradients of proteins attached to a substrate, highlighting the mechanics behind it that are not well understood.
  • Researchers created controlled fibronectin dot patterns to analyze how various factors like dot size and concentration affect fibroblast movement, finding that specific conditions led to optimal cell migration towards areas of higher fibronectin density.
  • The findings revealed that cell movement depends on intracellular forces and interactions among proteins like RhoA, Cdc42, and aPKCζ, which play crucial roles in recognizing and responding to adhesive gradients during haptotaxis.

Article Abstract

Although much is known about chemotaxis- induced by gradients of soluble chemical cues - the molecular mechanisms involved in haptotaxis (migration induced by substrate-bound protein gradients) are largely unknown. We used micropatterning to produce discontinuous gradients consisting of μm-sized fibronectin-dots arranged at constant lateral but continuously decreasing axial spacing. Parameters like gradient slope, protein concentration and size or shape of the fibronectin dots were modified to determine optimal conditions for directional cell migration in gradient patterns. We demonstrate that fibroblasts predominantly migrate uphill towards a higher fibronectin density in gradients with a dot size of 2 × 2 μm, a 2% and 6% slope, and a low fibronectin concentration of 1 μg ml. Increasing dot size to 3.5 × 3.5 μm resulted in stationary cells, whereas rectangular dots (2 × 3 μm) orientated perpendicular to the gradient axis preferentially induce lateral migration. During haptotaxis, the Golgi apparatus reorients to a posterior position between the nucleus and the trailing edge. Using pharmacological inhibitors, we demonstrate that actomyosin contractility and microtubule dynamics are a prerequisite for gradient recognition indicating that asymmetric intracellular forces are necessary to read the axis of adhesive gradients. In the haptotaxis signalling cascade, RhoA and Cdc42, and the atypical protein kinase C zeta (aPKCζ), but not Rac, are located upstream of actomyosin contractility.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6ib00152aDOI Listing

Publication Analysis

Top Keywords

actomyosin contractility
12
migration haptotaxis
8
dot size
8
size μm
8
gradients
5
contractility rhogtpases
4
rhogtpases affect
4
affect cell-polarity
4
cell-polarity directional
4
migration
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!