As the needs for low-cost rapidly-produced microfluidics are growing with the trend of Lab-on-a-Chip and distributed healthcare, the fully inkjet-printing of microfluidics can be a solution to it with numerous potential electrical and sensing applications. Inkjet-printing is an additive manufacturing technique featuring no material waste and a low equipment cost. Moreover, similar to other additive manufacturing techniques, inkjet-printing is easy to learn and has a high fabrication speed, while it offers generally a great planar resolution down to below 20 µm and enables flexible designs due to its inherent thin film deposition capabilities. Due to the thin film feature, the printed objects also usually obtain a high vertical resolution (such as 4.6 µm). This paper introduces a low-cost rapid three-dimensional fabrication process of microfluidics, that relies entirely on an inkjet-printer based single platform and can be implemented directly on top of virtually any substrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054388PMC
http://dx.doi.org/10.1038/srep35111DOI Listing

Publication Analysis

Top Keywords

microfluidics solution
8
low-cost rapid
8
rapid three-dimensional
8
electrical sensing
8
sensing applications
8
additive manufacturing
8
resolution µm
8
thin film
8
microfluidics
5
fully inkjet-printed
4

Similar Publications

Modeling of Electric Field and Dielectrophoretic Force in a Parallel-Plate Cell Separation Device with an Electrode Lid and Analytical Formulation Using Fourier Series.

Sensors (Basel)

December 2024

Department of Applied Physics, National Defense Academy, Hashirimizu 1-10-20, Yokosuka 239-0802, Kanagawa, Japan.

Dielectrophoresis (DEP) cell separation technology is an effective means of separating target cells which are only marginally present in a wide variety of cells. To develop highly efficient cell separation devices, detailed analysis of the nonuniform electric field's intensity distribution within the device is needed, as it affects separation performance. Here we analytically expressed the distributions of the electric field and DEP force in a parallel-plate cell separation DEP device by employing electrostatic analysis through the Fourier series method.

View Article and Find Full Text PDF

Microfluidics provides cutting-edge technological advancements for the in-channel manipulation and analysis of dissolved macromolecular species. The intrinsic potential of microfluidic devices to control key characteristics of polymer macromolecules such as their size distribution requires unleashing its full capacity. This work proposes a combined approach to analyzing the microscale behavior of polymer solutions and modifying their properties.

View Article and Find Full Text PDF

Advances in Surface-Enhanced Raman Spectroscopy for Therapeutic Drug Monitoring.

Molecules

December 2024

Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China.

Therapeutic drug monitoring (TDM) is pivotal for optimizing drug dosage regimens in individual patients, particularly for drugs with a narrow therapeutic index. Surface-enhanced Raman spectroscopy (SERS) has shown great potential in TDM due to high sensitivity, non-destructive analysis, specific fingerprint spectrum, low sample consumption, simple operation, and low ongoing costs. Due to the rapid development of SERS for TDM, a review focusing on the analytical method is presented to better understand the trends.

View Article and Find Full Text PDF

Development of an automated microfluidic system for actinide separation and analysis.

J Chromatogr A

December 2024

Dalton Nuclear Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK; Department of Mechanical, Aerospace & Civil Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.

Mass spectroscopy and microfluidic technology, when combined, offer significant advantages in radiochemical analysis sample volume and cost reduction. A microfluidic device designed for efficiency has been developed. This device separates uranium from key trace elements by utilising UTEVA® chromatographic resins and nitric acid solutions of different concentrations for adsorption and recovery.

View Article and Find Full Text PDF

The demand for sensitive, rapid, and affordable diagnostic techniques has surged, particularly following the COVID-19 pandemic, driving the development of CRISPR-based diagnostic tools that utilize Cas effector proteins (such as Cas9, Cas12, and Cas13) as viable alternatives to traditional nucleic acid-based detection methods. These CRISPR systems, often integrated with biosensing and amplification technologies, provide precise, rapid, and portable diagnostics, making on-site testing without the need for extensive infrastructure feasible, especially in underserved or rural areas. In contrast, traditional diagnostic methods, while still essential, are often limited by the need for costly equipment and skilled operators, restricting their accessibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!