During brain development, the small GTPases Rac1/Rac3 play key roles in neuronal migration, neuritogenesis, synaptic formation and plasticity, via control of actin cytoskeleton dynamic. Their activity is positively and negatively regulated by GEFs and GAPs molecules, respectively. However their in vivo roles are poorly known. The ArhGAP15 gene, coding for a Rac-specific GAP protein, is expressed in both excitatory and inhibitory neurons of the adult hippocampus, and its loss results in the hyperactivation of Rac1/Rac3. In the CA3 and dentate gyrus (DG) regions of the ArhGAP15 mutant hippocampus the CR+, PV+ and SST+ inhibitory neurons are reduced in number, due to reduced efficiency and directionality of their migration, while pyramidal neurons are unaffected. Loss of ArhGAP15 alters neuritogenesis and the balance between excitatory and inhibitory synapses, with a net functional result consisting in increased spike frequency and bursts, accompanied by poor synchronization. Thus, the loss of ArhGAP15 mainly impacts on interneuron-dependent inhibition. Adult ArhGAP15 mice showed defective hippocampus-dependent functions such as working and associative memories. These findings indicate that a normal architecture and function of hippocampal inhibitory neurons is essential for higher hippocampal functions, and is exquisitely sensitive to ArhGAP15-dependent modulation of Rac1/Rac3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054378 | PMC |
http://dx.doi.org/10.1038/srep34877 | DOI Listing |
Front Neurosci
December 2024
Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.
Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.
View Article and Find Full Text PDFIntroduction: Alzheimer's disease (AD), Dementia with Lewy bodies (DLB), and Parkinson's disease (PD) represent a spectrum of neurodegenerative disorders (NDDs). Here, we performed the first direct comparison of their transcriptomic landscapes.
Methods: We profiled the whole transcriptomes of NDD cortical tissue by snRNA-seq.
encodes a UDP-galactose transporter essential for glycosylation of proteins and galactosylation of lipids and glycosaminoglycans. Germline genetic variants have been identified in congenital disorders of glycosylation and somatic variants have been linked to intractable epilepsy associated with malformations of cortical development. However, the functional consequences of these pathogenic variants on brain development and network integrity remain elusive.
View Article and Find Full Text PDFNeuronal connection dysfunction is a convergent cause of cognitive deficits in mental disorders. Cognitive processes are finely regulated at the synaptic level by membrane proteins, some of which are shed and detectable in patients' cerebrospinal fluid (CSF). However, whether these soluble synaptic proteins can harnessed as innovative pro-cognitive factors to treat brain disorders remains unclear.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Pozuelo de Alarcón, 28223, Spain.
Background: Changes in amyloid beta (Aβ) and phosphorylated tau brain levels are known to affect brain network organization but very little is known about how plasma markers can relate to these measures. We aimed to address the relationship between centrality network changes and two plasma pathology markers: phosphorylated tau at threonine 231 (p-tau231), a proxy for early Aβ change, and neurofilament light chain (Nfl), a marker of axonal degeneration.
Methods: One hundred and four cognitively unimpaired individuals were divided into a high pathology load (33 individuals; HP) group and a low pathology (71 individuals; LP) one.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!