Abundant DNA 6mA methylation during early embryogenesis of zebrafish and pig.

Nat Commun

Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.

Published: October 2016

DNA N-methyldeoxyadenosine (6mA) is a well-known prokaryotic DNA modification that has been shown to exist and play epigenetic roles in eukaryotic DNA. Here we report that 6mA accumulates up to ∼0.1-0.2% of total deoxyadenosine during early embryogenesis of vertebrates, but diminishes to the background level with the progression of the embryo development. During this process a large fraction of 6mAs locate in repetitive regions of the genome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5059759PMC
http://dx.doi.org/10.1038/ncomms13052DOI Listing

Publication Analysis

Top Keywords

early embryogenesis
8
abundant dna
4
dna 6ma
4
6ma methylation
4
methylation early
4
embryogenesis zebrafish
4
zebrafish pig
4
pig dna
4
dna n-methyldeoxyadenosine
4
n-methyldeoxyadenosine 6ma
4

Similar Publications

In recent decades, it has become increasingly clear that mammalian gametes and early embryos are highly sensitive to metabolic substrates. With advances in single-cell sequencing, metabolomics, and bioinformatics, we now recognize that metabolic pathways not only meet cellular energy demands but also play a critical role in cell proliferation, differentiation, and fate determination. Investigating metabolic processes during oocyte maturation and early embryonic development is thus essential to advancing reproductive medicine and embryology.

View Article and Find Full Text PDF

Nanoplastic-Induced Developmental Toxicity in Ascidians: Comparative Analysis of Chorionated and Dechorionated Embryos.

J Xenobiot

January 2025

Laboratoire de Biologie du Développement (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), 06230 Villefranche-sur-Mer, France.

Nanoplastics pose a growing threat to marine ecosystems, particularly affecting the early developmental stages of marine organisms. This study investigates the effects of amino-modified polystyrene nanoparticles (PS-NH, 50 nm) on the embryonic development of , a model ascidian species. Both chorionated and dechorionated embryos were exposed to increasing concentrations of PS-NH so morphological alterations could be assessed with a high-content analysis of the phenotypes and genotoxicity.

View Article and Find Full Text PDF

Primordial germ cells (PGCs) play a crucial role in transmitting genetic information to the next-generation. In chickens, genetically edited PGCs can be propagated and subsequently transplanted into recipient embryos to produce offspring with desired genetic traits. However, during early embryogenesis, the effects of external conditions on PGC migration through the vascular system to the gonads have yet to be explored, which may affect the efficiency of preparing gene-edited chickens.

View Article and Find Full Text PDF

Background: Mitosis maintains a genome's genetic information in daughter cells by accurately segregating chromosomes. However, chromosome aberrations are common during early mammalian embryogenesis. Chromosomal abnormalities during the early stages of embryogenesis result in the formation of mosaic embryos, wherein cells with normal genomes coexist with cells exhibiting abnormal genomes.

View Article and Find Full Text PDF

Study on gene expression in the liver at various developmental stages of human embryos.

Front Cell Dev Biol

January 2025

Basic Medical Research Centre, Medical School, Nantong University, Nantong, Jiangsu, China.

Background: The normal development of the liver during human embryonic stages is critical for the functionality of the adult liver. Despite this, the essential genes, biological processes, and signal pathways that drive liver development in human embryos remain poorly understood.

Methods: In this study, liver samples were collected from human embryos at progressive developmental stages, ranging from 2-month-old to 7-month-old.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!