Allosteric Modulation of Muscarinic Acetylcholine Receptors.

Pharmaceuticals (Basel)

Division of Neuroscience Research in Psychiatry, University of Minnesota Medical School, Minneapolis, MN 55455, USA.

Published: August 2010

An allosteric modulator is a ligand that binds to an allosteric site on the receptor and changes receptor conformation to produce increase (positive cooperativity) or decrease (negative cooperativity) in the binding or action of an orthosteric agonist (e.g., acetylcholine). Since the identification of gallamine as the first allosteric modulator of muscarinic receptors in 1976, this unique mode of receptor modulation has been intensively studied by many groups. This review summarizes over 30 years of research on the molecular mechanisms of allosteric interactions of drugs with the receptor and for new allosteric modulators of muscarinic receptors with potential therapeutic use. Identification of positive modulators of acetylcholine binding and function that enhance neurotransmission and the discovery of highly selective allosteric modulators are mile-stones on the way to novel therapeutic agents for the treatment of schizophrenia, Alzheimer's disease and other disorders involving impaired cognitive function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4034100PMC
http://dx.doi.org/10.3390/ph3092838DOI Listing

Publication Analysis

Top Keywords

allosteric modulator
8
muscarinic receptors
8
allosteric modulators
8
allosteric
7
allosteric modulation
4
modulation muscarinic
4
muscarinic acetylcholine
4
acetylcholine receptors
4
receptors allosteric
4
modulator ligand
4

Similar Publications

Competitive Antagonism of Xylazine on α7 Nicotinic Acetylcholine Receptors and Reversal by Curcuminoids.

ACS Chem Neurosci

December 2024

Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.

Co-use of xylazine with opioids is a major health threat in the United States. However, a critical knowledge gap exists in the understanding of xylazine-induced pharmacological and pathological impact. Xylazine is mostly known as an agonist of α2-adrenergic receptors (α2-ARs), but its deleterious effects on humans cannot be fully reversed by the α2-AR antagonists, suggesting the possibility that xylazine targets receptors other than α2-ARs.

View Article and Find Full Text PDF

Neuro-immunobiology and treatment assessment in a mouse model of anti-NMDAR encephalitis.

Brain

December 2024

Neuroimmunology Program, Fundació Clínic per la Recerca Biomèdica - Institut d'Investigacions Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), Barcelona 08036, Spain.

Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a disorder mediated by autoantibodies against the GluN1 subunit of NMDAR. It occurs with severe neuropsychiatric symptoms that often improve with immunotherapy. Clinical studies and animal models based on patients' antibody transfer or NMDAR immunization suggest that the autoantibodies play a major pathogenic role.

View Article and Find Full Text PDF

Rubella virus (RUBV) is responsible for causing rashes, lymphadenopathy, and fever which are the hallmarks of an acute viral illness called Rubella. For RUBV replication, the non-structural polyprotein p200 must be cleaved by the rubella papain-like protease (RubPro) into the multifunctional proteins p150 and p90. Hence, RubPro is an attractive target for anti-viral drug discovery.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs), the largest family of drug targets, can signal through 16 subtypes of Gα proteins. Biased compounds that selectively activate therapy-relevant pathways promise to be safer, more effective medications. The determinants of bias are poorly understood, however, and rationally-designed, G protein-subtype-selective compounds are lacking.

View Article and Find Full Text PDF

Metalloporphyrins have been widely utilized as building blocks for molecular self-assembly in organic solvents, but their application in water is less common due to competition from water molecules for the metal center. However, Co(III) metalloporphyrins are notable for their strong binding to two aromatic amine ligands in aqueous buffers. In this study, we present a comprehensive investigation of the binding behavior of Co(III) tetraphenyl sulfonic acid porphyrin with selected aromatic and aliphatic amines in aqueous solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!