The nuclear export protein, exportin-1 (XPO1/CRM1), is overexpressed in many cancers and correlates with poor prognosis. Selinexor, a first-in-class Selective Inhibitor of Nuclear Export (SINE) compound, binds covalently to XPO1 and blocks its function. Treatment of cancer cells with selinexor results in nuclear retention of major tumor suppressor proteins and cell cycle regulators, leading to growth arrest and apoptosis. Recently, we described the selection of SINE compound resistant cells and reported elevated expression of inflammation-related genes in these cells. Here, we demonstrated that NF-κB transcriptional activity is up-regulated in cells that are naturally resistant or have acquired resistance to SINE compounds. Resistance to SINE compounds was created by knockdown of the cellular NF-κB inhibitor, IκB-α. Combination treatment of selinexor with proteasome inhibitors decreased NF-κB activity, sensitized SINE compound resistant cells and showed synergistic cytotoxicity in vitro and in vivo. Furthermore, we showed that selinexor inhibited NF-κB activity by blocking phosphorylation of the IκB-α and the NF-κB p65 subunits, protecting IκB-α from proteasome degradation and trapping IκB-α in the nucleus to suppress NF-κB activity. Therefore, combination treatment of selinexor with a proteasome inhibitor may be beneficial to patients with resistance to either single-agent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5346685PMC
http://dx.doi.org/10.18632/oncotarget.12428DOI Listing

Publication Analysis

Top Keywords

sine compound
16
nuclear export
12
nf-κb activity
12
selective inhibitor
8
inhibitor nuclear
8
export sine
8
proteasome inhibitors
8
compound resistant
8
resistant cells
8
resistance sine
8

Similar Publications

The aim of this study was to compare the concentration of phenolic compounds, glucosinolates, proteins, sugars and vitamin C between kohlrabi ( var. ), Savoy cabbage (), Brussels sprouts (), cauliflower (), radish () and garden cress () microgreens for their antioxidant and hypoglycemic potential. In addition, we applied an in vitro-simulated system of human digestion in order to track the bioaccessibility of the selected phenolic representatives, and the stability of the microgreens' antioxidant and hypoglycemic potential in terms of α-amylase and α-glucosidase inhibition after each digestion phase.

View Article and Find Full Text PDF
Article Synopsis
  • Tyrosine kinase inhibitors (TKIs) are emerging cancer treatments that target specific cell signaling pathways, with pyrazoline compounds showing great promise in their effectiveness and adaptability.
  • The objective of the research is to create highly effective TKI agents with minimal side effects, enhancing cancer treatment outcomes.
  • The review focuses on the structure-activity relationships of pyrazoline analogues used as TKIs, detailing recent advancements, including patents and clinical trials, to support the development of future anticancer drugs.
View Article and Find Full Text PDF

Drug modulation of the α7 acetylcholine receptor has emerged as a therapeutic strategy for neurological, neurodegenerative, and inflammatory disorders. α7 is a homo-pentamer containing topographically distinct sites for agonists, calcium, and drug modulators with each type of site present in five copies. However, functional relationships between agonist, calcium, and drug modulator sites remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!