Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: The aim of this prospective multicenter study was to identify the optimal approach for simple and fast fractional flow reserve (FFR) computation from radiographic coronary angiography, called quantitative flow ratio (QFR).
Background: A novel, rapid computation of QFR pullbacks from 3-dimensional quantitative coronary angiography was developed recently.
Methods: QFR was derived from 3 flow models with: 1) fixed empiric hyperemic flow velocity (fixed-flow QFR [fQFR]); 2) modeled hyperemic flow velocity derived from angiography without drug-induced hyperemia (contrast-flow QFR [cQFR]); and 3) measured hyperemic flow velocity derived from angiography during adenosine-induced hyperemia (adenosine-flow QFR [aQFR]). Pressure wire-derived FFR, measured during maximal hyperemia, served as the reference. Separate independent core laboratories analyzed angiographic images and pressure tracings from 8 centers in 7 countries.
Results: The QFR and FFR from 84 vessels in 73 patients with intermediate coronary lesions were compared. Mean angiographic percent diameter stenosis (DS%) was 46.1 ± 8.9%; 27 vessels (32%) had FFR ≤ 0.80. Good agreement with FFR was observed for fQFR, cQFR, and aQFR, with mean differences of 0.003 ± 0.068 (p = 0.66), 0.001 ± 0.059 (p = 0.90), and -0.001 ± 0.065 (p = 0.90), respectively. The overall diagnostic accuracy for identifying an FFR of ≤0.80 was 80% (95% confidence interval [CI]: 71% to 89%), 86% (95% CI: 78% to 93%), and 87% (95% CI: 80% to 94%). The area under the receiver-operating characteristic curve was higher for cQFR than fQFR (difference: 0.04; 95% CI: 0.01 to 0.08; p < 0.01), but did not differ significantly between cQFR and aQFR (difference: 0.01; 95% CI: -0.04 to 0.06; p = 0.65). Compared with DS%, both cQFR and aQFR increased the area under the receiver-operating characteristic curve by 0.20 (p < 0.01) and 0.19 (p < 0.01). The positive likelihood ratio was 4.8, 8.4, and 8.9 for fQFR, cQFR, and aQFR, with negative likelihood ratio of 0.4, 0.3, and 0.2, respectively.
Conclusions: The QFR computation improved the diagnostic accuracy of 3-dimensional quantitative coronary angiography-based identification of stenosis significance. The favorable results of cQFR that does not require pharmacologic hyperemia induction bears the potential of a wider adoption of FFR-based lesion assessment through a reduction in procedure time, risk, and costs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcin.2016.07.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!