Shape-Controlled Synthesis of All-Inorganic CsPbBr Perovskite Nanocrystals with Bright Blue Emission.

ACS Appl Mater Interfaces

Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education , Beijing, 100044, China.

Published: October 2016

We developed a colloidal synthesis of CsPbBr perovskite nanocrystals (NCs) at a relative low temperature (90 °C) for the bright blue emission which differs from the original green emission (∼510 nm) of CsPbBr nanocubes as reported previously. Shapes of the obtained CsPbBr NCs can be systematically engineered into single and lamellar-structured 0D quantum dots, as well as face-to-face stacking 2D nanoplatelets and flat-lying 2D nanosheets via tuning the amounts of oleic acid (OA) and oleylamine (OM). They exhibit sharp excitonic PL emissions at 453, 472, 449, and 452 nm, respectively. The large blue shift relative to the emission of CsPbBr bulk crystal can be ascribed to the strong quantum confinement effects of these various nanoshapes. PL decay lifetimes are measured, ranging from several to tens of nanoseconds, which infers the higher ratio of exciton radiative recombination to the nonradiative trappers in the obtained CsPbBr NCs. These shape-controlled CsPbBr perovskite NCs with the bright blue emission will be widely used in optoelectronic applications, especially in blue LEDs which still lag behind compared to the better developed red and green LEDs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b08528DOI Listing

Publication Analysis

Top Keywords

cspbbr perovskite
12
bright blue
12
blue emission
12
perovskite nanocrystals
8
cspbbr ncs
8
cspbbr
7
blue
5
emission
5
shape-controlled synthesis
4
synthesis all-inorganic
4

Similar Publications

Heterojunctions, known for their decent separation of photo-generated electrons and holes, are promising for photocatalytic CO reduction. However, a significant obstacle in traditional post-assembled heterojunctions is the high interfacial barrier for charge transfer caused by atomic lattice mismatch at multiphase interfaces. Here, as research prototypes, the study creates a lattice-matched co-atomic interface within CsPbBr-CsPbBr polytypic nanocrystals (113-125 PNs) through the proposed in situ hybrid strategy to elucidate the underlying charge transfer mechanism within this unique interface.

View Article and Find Full Text PDF

Deciphering the Energy Transfer Mechanism Across Metal Halide Perovskite-Phthalocyanine Interfaces.

Adv Sci (Weinh)

January 2025

Institute of Molecular Science, University of Valencia, c/Catedrático José Beltrán Martínez 2, Paterna, 46980, Valencia, Spain.

Energy transfer processes in nanohybrids are at the focal point of conceptualizing, designing, and realizing novel energy-harvesting systems featuring nanocrystals that absorb photons and transfer their energy unidirectionally to surface-immobilized functional dyes. Importantly, the functionality of these dyes defines the ultimate application. Herein, CsPbBr perovskite nanocrystals (NCs) are interfaced with zinc phthalocyanine (ZnPc) dyes featuring carboxylic acid.

View Article and Find Full Text PDF

Highly Efficient Blue Light-Emitting Diodes Enabled by Gradient Core/Shell-Structured Perovskite Quantum Dots.

ACS Nano

January 2025

MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, School of Materials Science and Engineering, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.

Room temperature (RT) synthesized mixed bromine and chlorine CsPbBrCl perovskite quantum dots (Pe-QDs) offer notable advantages for blue quantum dot light-emitting diodes (QLEDs), such as cost-effective processing and narrow luminescence peaks. However, the efficiency of blue QLEDs using these RT-synthesized QDs has been limited by inferior crystallinity and deep defect presence. In this study, we demonstrate a precise approach to constructing high-quality gradient core-shell (CS) structures of CsPbBrCl QD through anion exchange.

View Article and Find Full Text PDF

A novel dual-mode microfluidic sensing platform integrating photoelectrochemical (PEC) and fluorescence (FL) sensors was developed for the sensitive monitoring of heart fatty acid binding protein (h-FABP). First, BiVO/AgInS (BVAIS) composites with excellent photoelectric activity were synthesized as sensing matrices. The BVAIS heterojunction with a well-matched internal energy level structure provided a stable photocurrent.

View Article and Find Full Text PDF

Lattice Oxygen Redox Dynamics in Zeolite-Encapsulated CsPbBr Perovskite OER Electrocatalysts.

Adv Sci (Weinh)

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.

Understanding the oxygen evolution reaction (OER) mechanism is pivotal for improving the overall efficiency of water electrolysis. Despite methylammonium lead halide perovskites (MAPbX) have shown promising OER performance due to their soft-lattice nature that allows lattice-oxygen oxidation of active α-PbO layer surface, the role of A-site MA or X-site elements in the electrochemical reconstruction and OER mechanisms has yet to be explored. Here, it is demonstrated that the OER mechanism of perovskite@zeolite composites is intrinsically dominated by the A-site group of lead-halide perovskites, while the type of X-site halogen is crucial for the reconstruction kinetics of the composites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!