Antibacterial Adhesion of Poly(methyl methacrylate) Modified by Borneol Acrylate.

ACS Appl Mater Interfaces

Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

Published: October 2016

Poly(methyl methacrylate) (PMMA) is a widely used biomaterial. But there is still a challenge facing its unwanted bacterial adhesion because the subsequent biofilm formation usually leads to failure of related implants. Herein, we present a borneol-modified PMMA based on a facile and effective stereochemical strategy, generating antibacterial copolymer named as P(MMA-co-BA). It was synthesized by free radical polymerization and studied with different ratio between methyl methacrylate (MMA) and borneol acrylate (BA) monomers. NMR, GPC, and EA, etc., were used to confirm their chemical features. Their films were challenged with Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive), showing a BA content dependent antibacterial performance. The minimum effective dose should be 10%. Then in vivo subcutaneous implantations in mice demonstrated their biocompatibilities through routine histotomy and HE staining. Therefore, P(MMA-co-BA)s not only exhibited their unique antibacterial character but also suggested a potential for the safe usage of borneol-modified PMMA frame and devices for further implantation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b10498DOI Listing

Publication Analysis

Top Keywords

polymethyl methacrylate
8
borneol acrylate
8
borneol-modified pmma
8
antibacterial
4
antibacterial adhesion
4
adhesion polymethyl
4
methacrylate modified
4
modified borneol
4
acrylate polymethyl
4
methacrylate pmma
4

Similar Publications

(1) Background: Ultra-high dose rate (UHDR) radiation therapy needs a reliable dosimetry solution and scintillation detectors are promising candidates. In this study, we characterized an inorganic powder-based scintillation detector under a 9 MeV UHDR electron beam. (2) Methods: A mixture of ZnS:Ag powder and optic glue was coupled to an 8 m Eska GH-4001-P polymethyl methacrylate (PMMA) optical fiber.

View Article and Find Full Text PDF

Fluorescently Tagged Poly(methyl methacrylate)s.

Molecules

December 2024

Dipartimento di Chimica e Biologia, and INSTM Research Unit, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy.

Plastic pollution is a global problem affecting the environment and, consequently, people's well-being. Careful and timely end-of-life plastic recycling is certainly a way, albeit a partial one, to remedy the problem. The immediate identification and selection of the different types of plastic materials in the recycling process certainly facilitate its recovery and reuse, allowing the damage caused by plastic emission into the environment to be limited.

View Article and Find Full Text PDF

Nanocomposite materials composed of an organic matrix and an inorganic nanofiller have been the subject of intense research in recent years. Indeed, the synergy between these two phases confers improved properties thanks to an increased surface-volume ratio, which reinforces the interactions between the particles and the polymer matrix. These interactions depend on many factors such as the shape, size and dispersion of the nanoobjects.

View Article and Find Full Text PDF

Microplastic contamination in the St. Lawrence River and Estuary (SLRE), Canada, poses potential risks to aquatic species. However, limited understanding of microplastic contamination in benthic fish, potentially more vulnerable than pelagic species, impedes effective risk assessment in this crucial ecosystem.

View Article and Find Full Text PDF

Development and evaluation of an in-beam PET system for proton therapy monitoring.

Phys Med Biol

January 2025

The Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, Wuhan, Hubei, 430074, CHINA.

Objective: In-beam positron emission tomography (PET) has important development prospects in real-time monitoring of proton therapy. However, in the beam-on operation, the high bursts of radiation events pose challenges to the performance of the PET system.

Approach: In this study, we developed a dual-head in-beam PET system for proton therapy monitoring and evaluated its performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!