Two alternative specific and very sensitive methods for determination of vinyl epoxide synthetase activity in liver microsomes are described. Trichloroethylene, which is used as a substrate, is converted into trichloroethylene oxide by a hepatic epoxide synthetase. Chloral hydrate, the final rearrangement product of trichloroethylene oxide, is evaluated by electron capture gas chromatography, either after derivatization with pentafluorophenyl-hydrazine or after its conversion into chloroform under alcaline conditions. The kinetic parameters of the epoxidative reaction have been determined on rat hepatic microsomal suspensions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-642-66896-8_60DOI Listing

Publication Analysis

Top Keywords

epoxide synthetase
8
trichloroethylene oxide
8
gas chromatographic
4
chromatographic method
4
method evaluation
4
evaluation vinyl
4
vinyl epoxidase
4
epoxidase activity
4
activity alternative
4
alternative specific
4

Similar Publications

Ferroptosis: when metabolism meets cell death.

Physiol Rev

April 2025

Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany.

We present here a comprehensive update on recent advancements in the field of ferroptosis, with a particular emphasis on its metabolic underpinnings and physiological impacts. After briefly introducing landmark studies that have helped to shape the concept of ferroptosis as a distinct form of cell death, we critically evaluate the key metabolic determinants involved in its regulation. These include the metabolism of essential trace elements such as selenium and iron; amino acids such as cyst(e)ine, methionine, glutamine/glutamate, and tryptophan; and carbohydrates, covering glycolysis, the citric acid cycle, the electron transport chain, and the pentose phosphate pathway.

View Article and Find Full Text PDF

Assessment of gamma-glutamyl carboxylase activity in its native milieu.

Methods Enzymol

November 2024

Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States. Electronic address:

Gamma-glutamyl carboxylase (GGCX), a polytopic membrane protein found in the endoplasmic reticulum, catalyzes the posttranslational modification of a variety of vitamin K-dependent (VKD) proteins to their functional forms. GGCX uses the free energy from the oxygenation of reduced vitamin K to remove the proton from the glutamate residue to drive VKD carboxylation. During the process of carboxylation, reduced vitamin K is oxidized to vitamin K epoxide.

View Article and Find Full Text PDF
Article Synopsis
  • Gamma-glutamyl carboxylase (GGCX) is crucial for modifying vitamin K-dependent proteins by adding carboxyl groups, which is essential for their functions in blood clotting and bone health.
  • Mutations in GGCX can lead to diseases such as vitamin K clotting factor deficiency and pseudoxanthoma elasticum-like diseases, but the mechanisms behind these mutations are not fully understood.
  • This chapter discusses biochemical and cellular methods used to study GGCX's function and the impact of its mutations, highlighting the need for a balanced presence of various components and methodologies to fully understand the enzyme's activity.
View Article and Find Full Text PDF

The delineation of the complex biosynthesis of the potent antibiotic mupirocin, which consists of a mixture of pseudomonic acids (PAs) isolated from Pseudomonas fluorescens NCIMB 10586, presents significant challenges, and the timing and mechanisms of several key transformations remain elusive. Particularly intriguing are the steps that process the linear backbone from the initial polyketide assembly phase to generate the first cyclic intermediate PA-B. These include epoxidation as well as incorporation of the tetrahydropyran (THP) ring and fatty acid side chain required for biological activity.

View Article and Find Full Text PDF

Etomoxir-carnitine, a novel pharmaco-metabolite of etomoxir, inhibits phospholipases A and mitochondrial respiration.

J Lipid Res

September 2024

Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA; Department of Chemistry, Washington University, Saint Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA; Center for Cardiovascular Research, Washington University School of Medicine, Saint Louis, MO, USA. Electronic address:

Mitochondrial fatty acid oxidation serves as an essential process for cellular survival, differentiation, proliferation, and energy metabolism. Numerous studies have utilized etomoxir (ETO) for the irreversible inhibition of carnitine palmitoylcarnitine transferase 1 (CPT1), which catalyzes the rate-limiting step for mitochondrial long-chain fatty acid β-oxidation to examine the bioenergetic roles of mitochondrial fatty acid metabolism in many tissues in multiple diverse disease states. Herein, we demonstrate that intact mitochondria robustly metabolize ETO to etomoxir-carnitine (ETO-carnitine) prior to nearly complete ETO-mediated inhibition of CPT1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!