A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrochemistry at single molecule occupancy in nanopore-confined recessed ring-disk electrode arrays. | LitMetric

Electrochemistry at single molecule occupancy in nanopore-confined recessed ring-disk electrode arrays.

Faraday Discuss

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA. and Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.

Published: December 2016

Electrochemical reactions at nanoscale structures possess unique characteristics, e.g. fast mass transport, high signal-to-noise ratio at low concentration, and insignificant ohmic losses even at low electrolyte concentrations. These properties motivate the fabrication of high density, laterally ordered arrays of nanopores, embedding vertically stacked metal-insulator-metal electrode structures and exhibiting precisely controlled pore size and interpore spacing for use in redox cycling. These nanoscale recessed ring-disk electrode (RRDE) arrays exhibit current amplification factors, AF, as large as 55-fold with Ru(NH), indicative of capture efficiencies at the top and bottom electrodes, Φ, exceeding 99%. Finite element simulations performed to investigate the concentration distribution of redox species and to assess operating characteristics are in excellent agreement with experiment. AF increases as the pore diameter, at constant pore spacing, increases in the range 200-500 nm and as the pore spacing, at constant pore diameter, decreases in the range 1000-460 nm. Optimized nanoscale RRDE arrays exhibit a linear current response with concentration ranging from 0.1 μM to 10 mM and a small capacitive current with scan rate up to 100 V s. At the lowest concentrations, the average pore occupancy is 〈n〉 ∼ 0.13 molecule establishing productive electrochemical signals at occupancies at and below the single molecule level in these nanoscale RRDE arrays.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6fd00062bDOI Listing

Publication Analysis

Top Keywords

rrde arrays
12
single molecule
8
recessed ring-disk
8
ring-disk electrode
8
arrays exhibit
8
pore diameter
8
constant pore
8
pore spacing
8
nanoscale rrde
8
pore
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!