Single molecular catalysis of a redox enzyme on nanoelectrodes.

Faraday Discuss

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Published: December 2016

Due to a high turnover coefficient, redox enzymes can serve as current amplifiers which make it possible to explore their catalytic mechanism by electrochemistry at the level of single molecules. On modified nanoelectrodes, the voltammetric behavior of a horseradish peroxidase (HRP) catalyzed hydroperoxide reduction no longer presents a continuous current response, but a staircase current response. Furthermore, single catalytic incidents were captured through a collision mode at a constant potential, from which the turnover number of HRP can be figured out statistically. In addition, the catalytic behavior is dynamic which may be caused by the orientation status of HRP on the surface of the electrode. This modified nanoelectrode methodology provides an electrochemical approach to investigate the single-molecule catalysis of redox enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6fd00061dDOI Listing

Publication Analysis

Top Keywords

catalysis redox
8
redox enzymes
8
current response
8
single molecular
4
molecular catalysis
4
redox enzyme
4
enzyme nanoelectrodes
4
nanoelectrodes high
4
high turnover
4
turnover coefficient
4

Similar Publications

Molecular basis for the enzymatic inactivity of class III glutaredoxin ROXY9 on standard glutathionylated substrates.

Nat Commun

January 2025

Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.

Class I glutaredoxins (GRXs) are nearly ubiquitous proteins that catalyse the glutathione (GSH)-dependent reduction of mainly glutathionylated substrates. In land plants, a third class of GRXs has evolved (class III). Class III GRXs regulate the activity of TGA transcription factors through yet unexplored mechanisms.

View Article and Find Full Text PDF

Radical covalent organic frameworks (RCOFs) have demonstrated significant potential in redox catalysis and energy conversion applications. However, the synthesis of stable RCOFs with well-defined neutral carbon radical centers is challenging due to the inherent radical instability, limited synthetic methods and characterization difficulties. Building upon the understanding of stable carbon radicals and structural modulations for preparing crystalline COFs, herein we report the synthesis of a crystalline carbon-centered RCOF through a facile post-oxidation process.

View Article and Find Full Text PDF

A Simple One-Pot Method for the Synthesis of BiFeO/BiFeO Heterojunction for High-Performance Photocatalytic Degradation Applications.

Int J Mol Sci

December 2024

Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.

This study presents a facile one-pot synthesis method to fabricate BiFeO-BiFeO-BiO heterojunction photocatalysts with controllable compositions and pure phases. Three different binary heterojunctions (BiFeO/BiFeO, BiFeO/BiO, and BiFeO/BiO) and a ternary BiFeO/BiFeO/BiO heterojunction were formed, all exhibiting significantly enhanced photocatalytic performance for the degradation of methylene blue (MB) and phenol under visible light irradiation, outperforming the individual compositions. Notably, the BiFeO/BiFeO heterojunction achieved the highest degradation efficiency (93.

View Article and Find Full Text PDF

Redox modification of mA demethylase SlALKBH2 in tomato regulates fruit ripening.

Nat Plants

January 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China.

Hydrogen peroxide (HO) functions as a critical signalling molecule in controlling multiple biological processes. How HO signalling integrates with other regulatory pathways such as epigenetic modification to coordinately regulate plant development remains elusive. Here we report that SlALKBH2, an mA demethylase required for normal ripening of tomato fruit, is sensitive to oxidative modification by HO, which leads to the formation of homodimers mediated by intermolecular disulfide bonds, and Cys39 serves as a key site in this process.

View Article and Find Full Text PDF

Magnetopyrite FeS modified with N/S-doped carbon as a synergistic electrocatalyst for lithium-sulfur batteries.

J Colloid Interface Sci

January 2025

College of Physics and Electronic Information, Yunnan Normal University, 650500 Kunming, China. Electronic address:

Rational design of effective cathode host materials is an effective way to solve the problems of serious shuttle and slow conversion of polysulfides in lithium-sulfur batteries (LSBs). However, the redox reaction of sulfur differs from conventional "Rocking chair" type batteries and involves a cumbersome phase transition process, so a single-component catalyst cannot consistently and steadily enhance the reaction rate throughout the redox process. In this work, a hybrid composed of magnetopyrite FeS catalyst-modified with N/S-doped porous carbon spheres (FeS@NSC) is proposed as a novel sulfur host to synergistically promote the adsorption and redox catalysis conversion of polysulfides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!