Excitons play a key role in technological applications since they have a strong influence on determining the efficiency of photovoltaic devices. Recently, it has been shown that the allotropes of phosphorus possess an optical band gap that can be tuned over a wide range of values including the near-infrared and visible spectra, which would make them promising candidates for optoelectronic applications. In this work we carry out ab initio many-body perturbation theory calculations to study the excitonic effects on the optical properties of two-dimensional phosphorus allotropes: the case of blue and black monolayers. We elucidate the most relevant optical transitions, exciton binding energy spectrum as well as real-space exciton distribution, particularly focusing on the absorption spectrum dependence on the incident light polarization. In addition, based on our results, we use a set of effective hydrogenic models, in which the electron-hole Coulomb interaction is included to estimate exciton binding energies and radii. Our results show an excellent agreement between the many-body methodology and the effective models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6cp05566d | DOI Listing |
Adv Healthc Mater
January 2025
State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, P. R. China.
Violet phosphorus (VP) is a phosphorus allotrope first discovered by Hittorf in 1865, which has aroused more attention in the biomedical field in recent years attributed to its gradually discovered unique properties. VP can be further categorized into bulk VP, VP nanosheets (VPNs), and VP quantum dots (VPQDs), and chemical vapor transport (CVT), liquid-phase/mechanical/laser exfoliation, and solvothermal synthesis are the common preparation approaches of bulk VP, VPNs, and VPQDs, respectively. Compared with another phosphorus allotrope (black phosphorus, BP) that is once highly regarded in biomedical applications, VP nanomaterial (namely VPNs and VPQDs) not only exhibits tunable bandgap, moderate on/off current ratio, and good biodegradability, but shows enhanced stability and biosafety as well, allowing it to be a promising candidate for a variety of biomedical applications like antibacterial therapy, anticancer therapy, and biosensing and disease diagnosis.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States.
The mineral schreibersite, e.g., FeP, is commonly found in iron-rich meteorites and could have served as an abiotic phosphorus source for prebiotic chemistry.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
A tubular strand of phosphorus composed of vectorially aligned pentagons has been theoretically predicted as a new allotrope of phosphorus with a polar structure, expecting potential applications. However, it has not been successfully synthesized yet due to the difficulty of creating isolated strands to avoid interchain bonding. Here, such an allotrope named "orange phosphorus" was successfully produced using a photo-assisted synthesis from an amorphous film of solution-processable NaP precursors.
View Article and Find Full Text PDFMikrochim Acta
November 2024
Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!