Electron transfer across the germanium-polyelectrolyte-gold nanoparticle interface: convenient detection and applications in sensing.

Phys Chem Chem Phys

Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.

Published: September 2016

Germanium-polyelectrolyte-gold nanoparticle composites were prepared and characterized using FTIR-ATR spectroscopy and scanning electron microscopy. The germanium (Ge) element served as an internal reflection element and the buildup of the layered system was followed in situ. A positively charged polyelectrolyte, poly (allylamine hydrochloride) (PAH) adsorbs spontaneously on negatively charged Ge. Citrate-stabilized gold nanoparticles can then be adsorbed onto the PAH layer. Upon illumination of the device with visible light a prominent absorption over the entire mid infrared region is observed which is due to intervalence band transitions in Ge. The strong infrared signals are evidence for holes in the valence band of the Ge semiconductor, which arise due to electron transfer to the gold nanoparticles (GNPs). The electron transfer, as evidenced by the holes in Ge, is affected by the nature of the gap between the Ge semiconductor and the GNPs. Increasing the gap by adsorbing polyelectrolyte multilayers hinders the electron transfer. Also, heating and vacuum have a pronounced effect. The device is proposed as a sensor, where the sensing event is transduced into an optical signal in the infrared region, as demonstrated for a thiol molecule. The thiol has a large affinity for gold, and therefore affects the germanium-gold nanoparticle gap. This reduces the electron transfer, and therefore the absorption in the infrared region upon illumination with visible light. Removal of the thiol from the solution leads to the recovery of the signal.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cp05098kDOI Listing

Publication Analysis

Top Keywords

electron transfer
20
infrared region
12
germanium-polyelectrolyte-gold nanoparticle
8
gold nanoparticles
8
visible light
8
electron
6
transfer germanium-polyelectrolyte-gold
4
nanoparticle interface
4
interface convenient
4
convenient detection
4

Similar Publications

Unraveling the Trade-Off Effect of Pyrogenic Carbons Between Biopseudocapacitors and Bioconductors During Anaerobic Methanogenesis.

Environ Sci Technol

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.

Pyrogenic carbons (PCs), with varying structures depending on the materials and thermal treatment conditions, have been extensively used to enhance anaerobic digestion by mediating electron transfer. However, the underlying mechanism has yet to be explored. Herein, the redirection and enhancement of the direct interspecies electron transfer (DIET) pathway were evidenced, along with the upregulated electrochemical properties and structural proteins in the methanogenic consortia.

View Article and Find Full Text PDF

Developing of molecular crystalline materials with light-induced multiple dynamic deformation in space dimension and photochromism on time scales has attracted much attention for its potential applications in actuators, sensoring and information storage. Nevertheless, organic crystals capable of both photoinduced dynamic effects and static color change are rare, particularly for multi-component cocrystals system. In this study, we first report the construction of charge transfer co-crystals allows their light-induced solid-to-liquid transition and photochromic behaviors to be controlled by trans-stilbene (TSB) as an electron donor and 3,4,5,6-Tetrafluorophthalonitrile (TFP) as an electron acceptor.

View Article and Find Full Text PDF

Correlated spin-wave generation and domain-wall oscillation in a topologically textured magnetic film.

Nat Mater

January 2025

Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.

Spin waves, or magnons, are essential for next-generation energy-efficient spintronics and magnonics. Yet, visualizing spin-wave dynamics at nanoscale and microwave frequencies remains a formidable challenge due to the lack of spin-sensitive, time-resolved microscopy. Here we report a breakthrough in imaging dipole-exchange spin waves in a ferromagnetic film owing to the development of laser-free ultrafast Lorentz electron microscopy, which is equipped with a microwave-mediated electron pulser for high spatiotemporal resolution.

View Article and Find Full Text PDF

The femtosecond dynamics of energy transfer from light-excited spirilloxanthin (Spx) to bacteriochlorophyll (BChl) a in the reaction centers (RCs) of purple photosynthetic bacteria Rhodospirillum rubrum was studied. According to crio-electron microscopy data, Spx is located near accessory BChl a in the B-branch of cofactors. Spx was excited by 25 fs laser pulses at 490 nm, and difference absorption spectra were recorded in the range 500-700 nm.

View Article and Find Full Text PDF

Piezoelectric catalysis possesses the potential to convert ocean wave energy into and holds broad prospects for extracting uranium from seawater. Herein, the Z-type ZnO@COF heterostructure composite with excellent piezoelectric properties was synthesized through in situ growth of covalent organic frameworks (COFs) on the surface of ZnO and used for efficient uranium extraction. The designed COFs shell enables ZnO with stability, abundant active sites and high-speed electron transport channels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!