O MAS NMR studies of oxo-based olefin metathesis catalysts: a critical assessment of signal enhancement methods.

Phys Chem Chem Phys

Unité de Catalyse et de Chimie du Solide, CNRS UMR 8181, Université de Lille, F-59655 Villeneuve d'Ascq, France.

Published: October 2016

The DFS enhancement method as applied to O MAS NMR was critically assessed, first on NaPO, a simple binary glass system, and in a second step, on a series of catalysis-related organometallic molecules and materials. The robustness of DFS was investigated for the wide range of anisotropic parameters (quadrupolar coupling and chemical shift anisotropy) encountered in these samples. Emphasis has been put on the variation of signal enhancements with respect to the DFS final sweep frequency, pulse amplitude and pulse duration, while line shape distortion issues were also addressed. Finally, the robustness of DFS enhancement of the O MAS NMR signal is shown through its successful application to silica-supported olefin metathesis catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cp04667cDOI Listing

Publication Analysis

Top Keywords

mas nmr
12
olefin metathesis
8
metathesis catalysts
8
dfs enhancement
8
robustness dfs
8
nmr studies
4
studies oxo-based
4
oxo-based olefin
4
catalysts critical
4
critical assessment
4

Similar Publications

Wood modification using low molecular weight thermosetting resins improves the biological durability and dimensional stability of wood while avoiding increasingly regulated biocides. During the modification process, resin monomers diffuse from the cell lumen to the cell wall, occupying micropore spaces before curing at 150 °C. This study investigated the mechanism of cell wall diffusion at multiple scales, comparing two test groups where diffusion was either facilitated or restricted.

View Article and Find Full Text PDF

Cellulose tosylate (MCC-Tos) is a key derivative for surface modification and a crucial precursor for cellulose compatibilization in click reactions, enabling its functionalization for advanced applications. Replacing tosyl groups with alkyne groups broadens cellulose's potential in biocompatible reactions, such as thiol-yne click chemistry and protein/enzyme immobilization. To achieve this, we optimized the heterogeneous synthesis of MCC-Tos using a Doehlert matrix statistical design, evaluating the influence and interaction of the reaction conditions.

View Article and Find Full Text PDF

H-F cross-polarization magic angle spinning dynamic nuclear polarization NMR investigation of advanced pharmaceutical formulations.

J Magn Reson

December 2024

Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden.

A new 3.2 mm H-F-X magic angle spinning dynamic nuclear polarization NMR (MAS DNP-NMR) probe was developed with a unique coil design with separate radiofrequency channels for H excitation and C or F detection to enable acquisition of H-F cross-polarization (CP) MAS experiments, direct-detected F spectra with proton decoupling, and acquisition on C with simultaneous double decoupling on the H and 19F channels as well as H-F-C double-CP experiments under low temperature MAS DNP conditions. We use these sequences to study AZD2811, which is an active pharmaceutical ingredient (API), in its pure dry state as well as in its corresponding drug delivery formulation consisting of drug-loaded polymeric nanoparticles (PNPs).

View Article and Find Full Text PDF

Solid electrolytes (SEs) are crucial for advancing next-generation rechargeable battery technologies, but their commercial viability is partially limited by expensive precursors, unscalable synthesis, or low ionic conductivity. Lithium tetrahaloaluminates offer an economical option but exhibit low Li conductivities with high activation energy barriers. This study reports the synthesis of lithium aluminum chalcohalide (LiAlClS) using inexpensive precursors one-step mechanochemical milling.

View Article and Find Full Text PDF

Indirect Detection of the Protons in and around Biradicals and their Mechanistic Role in MAS-DNP.

J Phys Chem Lett

January 2025

National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, Florida 32310, United States.

The contribution of protons in or near biradical polarizing agents in Dynamic Nuclear Polarization (DNP) has recently been under scrutiny. Results from selective deuteration and simulations have previously suggested that the role of protons in the biradical molecule depends on the strength of the electron-electron coupling. Here we use the cross effect DNP mechanism to identify and acquire H solid-state NMR spectra of the protons that contribute to propagation of the hyperpolarization, via an experimental approach dubbed Nuclear-Nuclear Double Resonance (NUDOR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!