is demonstrated. The design of the side-gated architecture not only simplifies the manufacturing process but also avoids any postdeposition damage to the organic ferroelectric film. The devices exhibit excellent performances for nonvolatile memory applications, and the memory hysteresis can be effectively modulated by adjusting the side-gate geometries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039971PMC
http://dx.doi.org/10.1002/advs.201600078DOI Listing

Publication Analysis

Top Keywords

nonvolatile memory
8
memory applications
8
side-gated ino
4
ino nanowire
4
nanowire ferroelectric
4
ferroelectric fets
4
fets high-performance
4
high-performance nonvolatile
4
applications demonstrated
4
demonstrated design
4

Similar Publications

Ferroelectric HfZrO (HZO) capacitors have been extensively explored for in-memory computing (IMC) applications due to their nonvolatility and back-end-of-line (BEOL) compatible process. Several IMC approaches using resistance and capacitance states in ferroelectric HZO have been proposed for vector-matrix multiplication (VMM), but previous approaches suffer from limited accuracy and reliability. In this work, we propose a promising approach centered on the remanent polarization (P) switching of binary ferroelectric HZO capacitor synapses.

View Article and Find Full Text PDF

Molecular electronics exhibiting resistive-switching memory features hold great promise for the next generation of digital technology. In this work, electrosynthesis of ruthenium polypyridyl nanoscale oligomeric films is demonstrated on an indium tin oxide (ITO) electrode followed by an ITO top contact deposition yielding large-scale (junction area = 0.7 × 0.

View Article and Find Full Text PDF

Synergistic Control of Ferroelectric and Optical Properties in Molecular Ferroelectric for Multiplexing Nonvolatile Memory.

Adv Mater

January 2025

Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China.

Utilizing the correlation among diverse physical properties to facilitate multiplexing and multistate memory is anticipated to emerge as an efficient strategy to enhance memory capacity, achieve device miniaturization, and ensure information security. As an important functional material, ferroelectrics have long been considered as a potential candidate in multistate memory devices. Furthermore, the integration of optical response offers an alternative path to realizing multiplexing features, further enhancing the versatility and efficiency of these devices.

View Article and Find Full Text PDF

We demonstrate low energy, forming and compliance-free operation of a resistive memory obtained by the partial oxidation of a two-dimensional layered van-der-Waals semiconductor: hafnium disulfide (HfS). Semiconductor-oxide heterostructures are achieved by low temperature (<300 °C) thermal oxidation of HfS under dry conditions, carefully controlling process parameters. The resulting HfOS/HfS heterostructures are integrated between metal contacts, forming vertical crossbar devices.

View Article and Find Full Text PDF

Exploiting biomimetic perception of invisible spectra in flexible artificial human vision systems (HVSs) is crucial for real-time dynamic information processing. Nevertheless, the fast processing of motion objects in natural environments poses a challenge, necessitating that these artificial HVSs simultaneously have swift photoresponse and nonvolatile memory. Here, inspired by the human retina, we propose a flexible UV neuromorphic visual synaptic device (NeuVSD) based on GaO@GaN-composited nanowires for dynamic visual perception.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!