This paper investigates a biologically motivated model of peripersonal space through its implementation on a humanoid robot. Guided by the present understanding of the neurophysiology of the fronto-parietal system, we developed a computational model inspired by the receptive fields of polymodal neurons identified, for example, in brain areas F4 and VIP. The experiments on the iCub humanoid robot show that the peripersonal space representation i) can be learned efficiently and in real-time via a simple interaction with the robot, ii) can lead to the generation of behaviors like avoidance and reaching, and iii) can contribute to the understanding the biological principle of motor equivalence. More specifically, with respect to i) the present model contributes to hypothesizing a learning mechanisms for peripersonal space. In relation to point ii) we show how a relatively simple controller can exploit the learned receptive fields to generate either avoidance or reaching of an incoming stimulus and for iii) we show how the robot can select arbitrary body parts as the controlled end-point of an avoidance or reaching movement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053419PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163713PLOS

Publication Analysis

Top Keywords

peripersonal space
16
humanoid robot
12
avoidance reaching
12
receptive fields
8
robot
5
peripersonal
4
space margin
4
margin safety
4
safety body
4
body learning
4

Similar Publications

Background: Widespread digital transformation necessitates developing digital competencies for public health practice. Given work in 2024 to update Canada's public health core competencies, there are opportunities to consider digital competencies. In our previous research, we identified digital competency and training recommendations within the literature.

View Article and Find Full Text PDF

Exposure to Airborne Particulate Matter and Undernutrition in Young Rats: An In-Depth Histopathological and Biochemical Study on Lung and Excretory Organs.

Food Chem Toxicol

January 2025

Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas. Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín - CONICET. San Martín, Buenos Aires, Argentina; Cátedra de Anatomía Patológica. Facultad de Odontología, Universidad de Buenos Aires. Buenos Aires, Argentina.

Environmental stressors, such as air particulate matter (PM) and nutrient deficiencies, can significantly impact crucial organs involved in detoxifying xenobiotics, including lungs, liver, and kidneys, especially in vulnerable populations like children. This study investigated the effect of 4-week exposure to Residual Oil Fly Ash (ROFA) on these organs in young rats under growth-restricted nutrition (NGR). We assessed histological, histomorphometric and biochemical parameters.

View Article and Find Full Text PDF

Disruption of the glymphatic system plays a vital role in pathogenesis of neurodegeneration in normal tension glaucoma (NTG). We evaluated the impairment of glymphatic system of NTG patients by diffusion tensor image analysis along the perivascular space (DTI-ALPS), and explored the correlation between the ALPS index and dysfunction of visual cortices in resting state. DTI-ALPS was applied to 37 normal controls (NCs) and 37 NTG patients.

View Article and Find Full Text PDF

Background: Extracranial schwannomas, particularly those arising from the masticator space, are rare entities. Given the challenges in pre-operative diagnosis and the potential for misdiagnosis, accurate localization and differential diagnosis are crucial for optimal surgical planning.

Case Report: A 42-year-old woman underwent a head and neck MRI for unrelated reasons and was incidentally found to have a mass in the left masticator space.

View Article and Find Full Text PDF

A photo-thermal dual crosslinked chitosan-based hydrogel membrane for guided bone regeneration.

Int J Biol Macromol

January 2025

Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian 350002, China. Electronic address:

Alveolar bone defects caused by inflammation or trauma jeopardize patients' oral functions. Guided bone regeneration (GBR) is widely used in repairing periodontal tissue, with barrier membranes play a crucial role in preserving the bone regeneration space. In this study, an injectable dual-crosslinked hydrogel was developed to improve the existing barrier membranes in flexibility and functionality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!