Most river systems are impacted by sewage effluent. It remains unclear if there is a lower threshold to the concentration of sewage effluent that can significantly change the structure of the microbial community and its mobile genetic elements in a natural river biofilm. We used novel in situ mesocosms to conduct replicated experiments to study how the addition of low-level concentrations of sewage effluent (nominally 2.5 ppm) affects river biofilms in two contrasting Chalk river systems, the Rivers Kennet and Lambourn (high/low sewage impact, respectively). 16S sequencing and qPCR showed that community composition was not significantly changed by the sewage effluent addition, but class 1 integron prevalence (Lambourn control 0.07% (SE ± 0.01), Lambourn sewage effluent 0.11% (SE ± 0.006), Kennet control 0.56% (SE ± 0.01), Kennet sewage effluent 1.28% (SE ± 0.16)) was significantly greater in the communities exposed to sewage effluent than in the control flumes (ANOVA, F = 5.11, p = 0.045) in both rivers. Furthermore, the difference in integron prevalence between the Kennet control (no sewage effluent addition) and Kennet sewage-treated samples was proportionally greater than the difference in prevalence between the Lambourn control and sewage-treated samples (ANOVA (interaction between treatment and river), F = 6.42, p = 0.028). Mechanisms that lead to such differences could include macronutrient/biofilm or phage/bacteria interactions. Our findings highlight the role that low-level exposure to complex polluting mixtures such as sewage effluent can play in the spread of antibiotic resistance genes. The results also highlight that certain conditions, such as macronutrient load, might accelerate spread of antibiotic resistance genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2016.09.035 | DOI Listing |
PLoS One
January 2025
Grupo de Investigación Materiales con Impacto (Mat&mpac) Universidad de Medellín, Medellín, Colombia.
In this study, we utilized drinking water treatment sludge (WTS) to produce adsorbents through the drying and calcination process. These adsorbents were then evaluated for their ability to remove azithromycin (AZT) from aqueous solutions. The L-500 adsorbent, derived from the calcination (at 500°C) of WTS generated under conditions of low turbidity in the drinking water treatment plant, presented an increase in the specific surface area from 70.
View Article and Find Full Text PDFSci Rep
January 2025
School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China.
Nitrate pollution is widespread environmental concern in most shallow groundwater systems. This study conducts a comprehensive investigation of shallow groundwater, deep groundwater, and surface water in a region of the Chinese Loess Plateau. Nitrate pollution in this area is severe with more than half of the shallow groundwater samples exceeding the limit of nitrate for drinking water (50 mg/L).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Patanjali Research Foundation, Haridwar, Uttarakhand, India.
This study evaluates the environmental and human health impact of sewage sludge generated in the Indo-Gangetic region (Uttarakhand and Uttar Pradesh) used as organic fertilizer and landfill disposal. The research conducts a comprehensive risk assessment, including physicochemical and heavy metals analysis, on triplicate sludge samples obtained from 30 sewage treatment plants. The study provides both qualitative and quantitative insights into potential hazards associated with sewage sludge.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Environmental Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
Chemosphere
January 2025
Swiss Federal Institute for Materials Science and Technology Empa, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, 8600, Dübendorf, Switzerland. Electronic address:
High production rates of chlorinated paraffins (CPs) and their widespread use resulted in a global contamination. Since 2017, short-chain CPs (SCCPs, C-C) are listed as persistent organic pollutants (POPs) in the Stockholm Convention. Technical CP mixtures contain hundreds of homologues and side products such as chlorinated olefins (COs), diolefins (CdiOs) and triolefins (CtriOs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!