Differences in Mitochondrial Coupling Reveal a Novel Signature of Mitohormesis in Muscle of Healthy Individuals.

J Clin Endocrinol Metab

Translational Research Institute for Metabolism and Diabetes (L.M.S., F.Y., C.S., H.H.C., S.R.S.), Florida Hospital, Orlando, Florida 32804; Clinical and Molecular Origins of Disease (L.M.S., M.E.G., S.R.S.), Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827; Pennington Biomedical Research Center (L.M.R., E.R.), Louisiana State University System, Baton Rouge, Louisiana 70808; Departments of Radiology, Physiology and Biophysics, and Bioengineering (K.E.C.), University of Washington Medical Center, Seattle, Washington 98195; Department of Biochemistry, Microbiology, and Immunology (M.-E.H.), University of Ottawa, Ottawa, Ontario ON K1N 6N5, Canada; Bioinformatics Core (A.H., A.E.), Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037; and Hospital for Sick Children (S.R.C.), Toronto, Ontario, ON M5G 1X8 Canada.

Published: December 2016

Context: Reduced mitochondrial coupling (ATP/O [P/O]) is associated with sedentariness and insulin resistance. Interpreting the physiological relevance of P/O measured in vitro is challenging.

Objective: To evaluate muscle mitochondrial function and associated transcriptional profiles in nonobese healthy individuals distinguished by their in vivo P/O.

Design: Individuals from an ancillary study of Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy phase 2 were assessed at baseline.

Setting: The study was performed at Pennington Biomedical Research Center.

Participants: Forty-seven (18 males, 26-50 y of age) sedentary, healthy nonobese individuals were divided into 2 groups based on their in vivo P/O.

Intervention: None. Main Outcome(s): Body composition by dual-energy x-ray absorptiometry, in vivo mitochondrial function (P/O and maximal ATP synthetic capacity) by P-magnetic resonance spectroscopy and optical spectroscopy were measured. A muscle biopsy was performed to measure fiber type, transcriptional profiling (microarray), and protein expressions.

Results: No differences in body composition, peak aerobic capacity, type I fiber content, or mitochondrial DNA copy number were observed between the 2 groups. Compared with the uncoupled group (lower P/O), the coupled group (higher P/O) had higher rates of maximal ATP synthetic capacity (maximal ATP synthetic capacity, P < .01). Transcriptomics analyses revealed higher expressions of genes involved in mitochondrial remodeling and the oxidative stress response in the coupled group. A trend for higher mitonuclear protein imbalance (P = .06) and an elevated mitochondrial unfolded protein response (heat shock protein 60 protein; P = .004) were also identified in the coupled group.

Conclusions: Higher muscle mitochondrial coupling is accompanied by an overall elevation in mitochondrial function, a novel transcriptional signature of oxidative stress and mitochondrial remodeling and indications of an mitochondrial unfolded protein response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5155692PMC
http://dx.doi.org/10.1210/jc.2016-2742DOI Listing

Publication Analysis

Top Keywords

mitochondrial coupling
12
mitochondrial function
12
maximal atp
12
atp synthetic
12
synthetic capacity
12
mitochondrial
10
healthy individuals
8
muscle mitochondrial
8
body composition
8
coupled group
8

Similar Publications

Cardiac diseases remain one of the leading causes of death globally, often linked to ischemic conditions that can affect cellular homeostasis and metabolism, which can lead to the development of cardiovascular dysfunction. Considering the effect of ischemic cardiomyopathy on the global population, it is vital to understand the impact of ischemia on cardiac cells and how ischemic conditions change different cellular functions through post-translational modification of cellular proteins. : To understand the cellular function and fine-tuning during stress, we established an ischemia model using neonatal rat ventricular cardiomyocytes.

View Article and Find Full Text PDF

Temporal RAGE Over-Expression Disrupts Lung Development by Modulating Apoptotic Signaling.

Curr Issues Mol Biol

December 2024

Department of Cell Biology and Physiology, Brigham Young University, 3054 Life Sciences Building, Provo, UT 84602, USA.

Receptors for advanced glycation end products (RAGE) are multiligand cell surface receptors found most abundantly in lung tissue. This study sought to evaluate the role of RAGE in lung development by using a transgenic (TG) mouse model that spatially and temporally controlled RAGE overexpression. Histological imaging revealed that RAGE upregulation from embryonic day (E) 15.

View Article and Find Full Text PDF

The intestinal microbiota comprises approximately 10-10 species of bacteria and plays a crucial role in host metabolism by facilitating various chemical reactions. Secondary bile acids (BAs) are key metabolites produced by gut microbiota.Initially synthesized by the liver, BA undergoes structural modifications through the activity of various intestinal microbiota enzymes, including eukaryotic, bacterial, and archaeal enzymes.

View Article and Find Full Text PDF

Purpose: The aim of this study was to determine whether a soccer match affects the rapid force-generating capacity of the hamstring muscles, given their key role in both horizontal ground reaction force production during sprint biomechanics, and in the deceleration of the shank during the late swing phase, where rapid force production is essential owing to time constraints. Therefore, the research objective was to determine soccer match-induced hamstrings residual fatigue and recovery through rate of torque development (RTD) and associated biochemical parameters.

Methods: The recovery kinetics of hamstrings RTD metrics by the 90°:20° test, together with serum biomarkers (creatine kinase, mitochondrial creatine kinase, transaminases, malondialdehyde, irisin), were assessed in 19 male, regional first-division soccer players (age = 20.

View Article and Find Full Text PDF

Introduction: Inflammatory diseases, such as diabetes mellitus, rheumatoid arthritis, and inflammatory bowel disease, lead to systemic immune microenvironment disturbances, contributing to bone loss, yet the mechanisms by which specific receptors regulate this process in inflammatory bone loss remain poorly understood. As a G-protein-coupled receptor, the Apelin receptor plays a crucial role in the regulation of inflammation and immune microenvironment. However, the precise mechanisms governing its role in inflammatory bone loss remain incompletely understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!