Context: No kinetic models presently exist which simulate the effect of chelation therapy on lead blood concentrations in lead poisoning.
Objective: Our aim was to develop a kinetic model that describes the kinetics of dimercaptosuccinic acid (DMSA; succimer), a commonly used chelating agent, that could be used in developing a lead chelating model.
Material And Methods: This was a kinetic modelling study. We used a two-compartment model, with a non-systemic gastrointestinal compartment (gut lumen) and the whole body as one systemic compartment. The only data available from the literature were used to calibrate the unknown model parameters. The calibrated model was then validated by comparing its predictions with measured data from three different experimental human studies.
Results: The model predicted total DMSA plasma and urine concentrations measured in three healthy volunteers after ingestion of DMSA 10 mg/kg. The model was then validated by using data from three other published studies; it predicted concentrations within a factor of two, representing inter-human variability.
Conclusions: A simple kinetic model simulating the kinetics of DMSA in humans has been developed and validated. The interest of this model lies in the future potential to use it to predict blood lead concentrations in lead-poisoned patients treated with DMSA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15563650.2016.1221508 | DOI Listing |
Theranostics
January 2025
School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China.
Copper plays an important role in the regulation of PD-L1, suggesting that reducing copper levels within tumors may enhance anti-cancer immunotherapy. Tumor microenvironment responsive copper nanodeprivator (TMECN) was developed for enhancing immunotherapy of tumor via the cross-link of mercaptopolyglycol bipyridine and dimercaptosuccinic acid modifying FePt nanoalloy using the disulfide bond. Upon entering tumor cells, the disulfide bond in TMECN is cleaved by the overexpressed glutathione, exposing abundance of sulfhydryl groups.
View Article and Find Full Text PDFJ Infect Chemother
December 2024
Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan.
The incidence of urinary tract infection (UTI) caused by extensive beta-lactamase-producing Escherichia coli (ESBL-EC) is increasing, including in children. However, the available oral antibiotic treatment options for ESBL-EC are limited. Herein, we report the cases of two children diagnosed with UTI caused by ESBL-EC (ESBL-UTI) who were switched from empirical intravenous antibiotics in UTI to amoxicillin-clavulanic acid (AMPC/CVA) (14:1) after the causative organism was found to be ESBL-EC.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Immunology, Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
Background: Severe Acute Respiratory syndrome coronavirus 2 (SARS-CoV-2) and Influenza A viruses (IAVs) are among the most important causes of viral respiratory tract infections, causing similar symptoms. IAV and SARS-CoV-2 infections can provoke mild symptoms like fever, cough, sore throat, loss of taste or smell, or they may cause more severe consequences leading to pneumonia, acute respiratory distress syndrome or even death. While treatments for IAV and SARS-CoV-2 infection are available, IAV antivirals often target viral proteins facilitating the emergence of drug-resistant viral variants.
View Article and Find Full Text PDFJ Pediatr Urol
November 2024
Department of Urology, Urology and Nephrology Center, Mansoura University, Egypt.
Introduction: Posterior urethral valves may lead to persistent hydronephrosis (HN) and bladder dysfunction despite successful endoscopic valve ablation (EVA).
Objectives: To evaluate the effect of overnight bladder drainage (OBD) on upper urinary tracts and bladders of boys post EVA.
Materials And Methods: Boys who had persistent HN after EVA were included.
Microb Drug Resist
January 2025
Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
Carbapenenemase producers, particularly the metallo-β-lactamase (MBL) types in , have emerged as an urgent threat in health care settings. MBLs require zinc at their catalytic site and can be inhibited by dimercaptosuccinic acid (DMSA), a metal chelator known for the treatment of lead and mercury intoxication. Isogenic strains of wild-type and OprD-deleted PA14, were constructed, producing the MBLs VIM-2, NDM-1, SPM-1, IMP-1, and AIM-1, or the non-MBL carbapenemases, GES-5 and KPC-2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!