Cryo-electron microscopy (EM) and small angle X-ray scattering (SAXS) are two different data acquisition modalities often used to glean information about the structure of large biomolecular complexes in their native states. A SAXS experiment is generally considered fast and easy but unveils the structure at very low resolution, whereas a cryo-EM experiment needs more extensive preparation and postacquisition computation to yield a three-dimensional (3D) density map at higher resolution. In certain applications, we may need to verify whether the data acquired in the SAXS and cryo-EM experiments correspond to the same structure (e.g., before reconstructing the 3D density map in EM). In this article, a simple and fast method is proposed to verify the compatibility of the SAXS and EM experimental data. The method is based on averaging the two-dimensional correlation of EM images and the Abel transform of the SAXS data. Orientational preferences are known to exist in cryo-EM experiments, and we also consider these effects on our method. The results are verified on simulations of conformational states of large biomolecular complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5220572PMC
http://dx.doi.org/10.1089/cmb.2016.0139DOI Listing

Publication Analysis

Top Keywords

small angle
8
angle x-ray
8
x-ray scattering
8
cryo-electron microscopy
8
saxs data
8
large biomolecular
8
biomolecular complexes
8
density map
8
cryo-em experiments
8
saxs
5

Similar Publications

Despite extensive research on the use of salts to enhance micellar growth, numerous questions remain regarding the impact of ionic exchange and molecular structure on charge neutralization. This study looks into how certain cations (Na, Ca, and Mg) affect the structure of a cocamidopropyl betaine CAPB and sodium dodecylbenzenesulfonate SDBS surfactant mixture, aiming toward applications in targeted delivery systems. The mixture consists of a zwitterionic surfactant, cocamidopropyl betaine (CAPB), and an anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), combined in varying molar ratios at a total concentration of 200 mM.

View Article and Find Full Text PDF

Joint gravitational-wave and γ-ray burst (GRB) observations are among the best prospects for standard siren cosmology. However, the strong selection effect for the coincident GRB detection, which is possible only for sources with small inclination angles, induces a systematic uncertainty that is currently not accounted for. We show that this severe source of bias can be removed by inferring the a priori unknown electromagnetic detection probability directly from multimessenger data.

View Article and Find Full Text PDF

Insights into the electroactive impact of magnetic nanostructures in PVDF composites small-angle neutron scattering.

Nanoscale

January 2025

Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal.

Poly(vinylidene fluoride) (PVDF) is technologically relevant due to its thermal stability; chemical, mechanical and radiation resistance; transparency; biocompatibility; and ease of processing. Several of those applications are related to its high electroactivity, for which the β-phase of the polymer is its most renowned protagonist. In this context, extensive research has been conducted on the crystallization of PVDF in the β-phase, when processed from melt and from solution.

View Article and Find Full Text PDF

In the field of chiral smectic liquid crystals, orthoconic antiferroelectric liquid crystals (OAFLCs) have attracted the interest of the scientific community due to the very high tilt angle, close to 45°, and the consequent optical properties. In the present study, the first H NMR investigation is reported on two samples, namely 3F5HPhF9 and 3F7HPhF8, showing the phase sequence isotropic-SmC*-SmC* and the phase sequence isotropic-SmA-SmC*-SmC*, respectively, when cooling from the isotropic to the crystalline phases. To this aim, the liquid crystals were doped with a small amount of deuterated probe biphenyl-4,4'-diol-d.

View Article and Find Full Text PDF

A key contribution to X-ray dark-field (XDF) contrast is the diffusion of X-rays by sample structures smaller than the imaging system's spatial resolution; this is related to position-dependent small-angle X-ray scattering. However, some experimental XDF techniques have reported that XDF contrast is also generated by resolvable sample edges. Speckle-based X-ray imaging (SBXI) extracts the XDF by analyzing sample-imposed changes to a reference speckle pattern's visibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!