AI Article Synopsis

  • Solution-processed organic single crystals are being studied for uses in displays, sensors, and flexible electronics, but issues with alignment and growth control limit their industrial use.
  • A new method involving photochemical modification and vapor annealing has been developed to create high-performance organic single-crystal thin film transistors with impressive mobility and multiple aligned crystals.
  • The research also examines the mechanical properties of these organic single crystals under extreme bending conditions, with a bending radius of 150 μm.

Article Abstract

Solution-processed organic single crystals with high carrier mobility have been actively investigated for diverse applications such as displays, sensors, and next generation electronics on a flexible platform. However, the lack of precise alignment and growth control of organic single crystals impedes the widespread adoption of organic materials in an industrial perspective. Here, a photochemical modification approach is reported tailoring the solubility and molecular diffusivity of polymeric sacrificial layer and sequential batch-type vapor annealing to implement high-performance (average saturation mobility: 8.01 cm V s ) organic single-crystal thin film transistors with large channel width including multiple aligned single crystals. Additionally, the mechanical properties of the organic single crystals are systematically investigated with extreme strain conditions such as bending radius of 150 μm.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201602467DOI Listing

Publication Analysis

Top Keywords

single crystals
16
organic single
12
organic
7
photochemical molecular
4
molecular tailoring
4
tailoring efficient
4
efficient diffusion
4
diffusion reorganization
4
reorganization organic
4
organic nanocrystals
4

Similar Publications

In the search for novel natural products with hepatoprotective effects against acetaminophen-induced acute liver injury, the marine-derived fungus WHUF0198 was investigated. Seventeen undescribed pyranopyridone alkaloids, aculeapyridones A-Q (-), were isolated by bioactivity-guided fractionation of an extract obtained by coculture of the WHUF0198 with the mangrove-associated fungus sp. DM27.

View Article and Find Full Text PDF

The photoinduced reaction of [Pt(NO)] with pyridine or its derivatives (L) was found to result in the formation of [PtL](NO) salts in high yield. This transformation was successfully probed for methyl- and carboxyethyl-substituted pyridines, and the corresponding [PtL](NO) salts were isolated and fully characterized using single-crystal X-ray diffraction (SCXRD). Anation of the [Pt(py)] cationic complex with N was studied by H NMR spectroscopy in aqueous and water/dimethyl sulfoxide solutions of [Pt(py)](NO).

View Article and Find Full Text PDF

The reactions of LAlH (L = HC(CMeNAr), Ar = 2,6-PrCH) (1) with diphenylphosphane oxide [PhP(O)H], diphenylphosphinamide [PhP(O)NH], and diaryl/alkyl phosphane [(RO)P(O)H (R = Ph, or Pr)] afford their corresponding compounds with compositions LAl(H)OP(Ph) (2), LAl[OP(Ph)] (3), LAl{[N(H)P(O)(Ph)][OP(Ph)]} (4), LAl(OPr) (5), and LAl(OPh) (6), respectively. These reactions probably undergo a process of dehydrogenation coupling, deaminating dehydrogenation coupling, or chain-breaking coupling. It is noteworthy to mention that the reaction of compound 1 with 2 equiv.

View Article and Find Full Text PDF

Achieving multicolor emission is a fascinating goal that remains challenging for zero-dimensional (0D) hybrid halides. We successfully obtained a three-millimeter-scale 0D (MXDA)CdBr (MXDA = CHN) single crystal (SC) by the solvothermal method. It serves as an outstanding host for doping with various valence activators, such as Cu, Mn and Sb, and these doped single crystals emit blue (470 nm), yellow (580 nm) and red (618 nm) fluorescence, which accurately cover a large visible region and achieve efficient multicolor emission.

View Article and Find Full Text PDF

High-Performance Oxide Crystal BaTeWO X-ray Detector with High Stability, Low Detection Limit, and Ultralow Dark Current Drift.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China.

X-ray detection materials and devices have received widespread attention due to their irreplaceable role in the medical, industrial, and military fields. In this paper, BaTeWO (BTW) crystal containing lone pairs of electrons with large atomic numbers and high density is reported as a new type of oxide crystal X-ray detection material. The anisotropic X-ray detection performance of the BTW single crystal (SC) is systematically studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!