Surface plasmon resonance (SPR) is one of the most powerful label-free methods to determine the kinetic parameters of molecular interactions in real time and in a highly sensitive way. Penicillin-binding proteins (PBPs) are peptidoglycan synthesis enzymes present in most bacteria. Established protocols to analyze interactions of PBPs by SPR involve immobilization to an ampicillin-coated chip surface (a β-lactam antibiotic mimicking its substrate), thereby forming a covalent complex with the PBPs transpeptidase (TP) active site. However, PBP interactions measured with a substrate-bound TP domain potentially affect interactions near the TPase active site. Furthermore, in vivo PBPs are anchored in the inner membrane by an N-terminal transmembrane helix, and hence immobilization at the C-terminal TPase domain gives an orientation contrary to the in vivo situation. We designed a new procedure: immobilization of PBP by copper-free click chemistry at an azide incorporated in the N terminus. In a proof-of-principle study, we immobilized Escherichia coli PBP1B on an SPR chip surface and used this for the analysis of the well-characterized interaction of PBP1B with LpoB. The site-specific incorporation of the azide affords control over protein orientation, thereby resulting in a homogeneous immobilization on the chip surface. This method can be used to study topology-dependent interactions of any (membrane) protein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5298014 | PMC |
http://dx.doi.org/10.1002/cbic.201600461 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!